• 제목/요약/키워드: Support Boundary

검색결과 454건 처리시간 0.24초

An Study on the Application of CPTED for Safer Schools (안전한 학교조성을 위한 CPTED 적용방안 연구)

  • Kang, Seok-Jin;Park, Mi-Rang
    • Journal of the Korean Institute of Educational Facilities
    • /
    • 제18권4호
    • /
    • pp.45-56
    • /
    • 2011
  • The purpose of this study is to suggest the application method of CPTED for safer schools. For the evaluation of the school safety, we invented the school survey checklist based on the principles of CPTED such as natural surveillance, access control, maintenance, and activity support. The checklist is consisted of three parts of schools including boundary, outside of the building, and inside of the building. For the field survey of schools, the 30 schools(elementary, middle, and high school) were selected in Seoul and Kyong-gi area as the crime rate. The result of this study shows the safety score for the most of schools were not satisfied. In addition, we realized the diverse strategies to enhance the school safety should be applied to schools in terms of CPTED. The detailed findings and policy implications will be discussed in the context.

  • PDF

A Study on the Continuity of the Plate to the concept of Topology in Interior Space (위상기하학적 개념에 의한 실내공간의 판의 연속성에 관한 연구)

  • Song, Hye-Young;Kim, Moon-Duck
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 한국실내디자인학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.171-175
    • /
    • 2005
  • The Principle of space composition in modern architecture is thought about functionalism that based on function and program but the present age attempt that escapes form of former space composition. The present age brings fast development than former ages, so we need the space which has correct flexibility on New Age for escaping in existing structural formality. Specially, the space that boundary of existing plate, column and wall is crumbled as becoming possible technological support with social backgrounds. What this study saying is the analysis about the relation between the concept of topology and the consecutive space composition. Therefore, there is the purpose understanding a characteristic of continuity of the plate through the topological concept and understanding the roll in interior space.

  • PDF

Manufacture of Doubly Curved Sheet Metals Using the Incremental Roll Forming Process and Prediction of Formed Shapes for Precision Forming (점진적 롤 성형공정을 이용한 이중곡률의 금속판재 제작 및 정밀성형을 위한 형상 예측)

  • 윤석준;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권9호
    • /
    • pp.95-102
    • /
    • 2004
  • A flexible incremental roll forming process has been developed by adopting the advantages of the incremental forming process and the roll forming process: i.e., inherent flexibility of the incremental forming process and continuous bending deformation of the roll forming process. It has an adjustable roll set as a forming tool composed of one upper center roll and two pairs of lower support rolls, which plays a key role during forming process. Through the experiments based on the various combinations of process parameters, it is shown that the incremental roll forming process is so effective as to manufacture various doubly curved sheet metals including concave-convex combination shapes in which there exists a line of inflection. The proposed relationship of the experimental parameters and the radius of curvature of the formed sheet boundary is found to be useful in prediction and control of the final shape.

Free Vibration Analysis of Axisymmetrical Circular Plate by Using Differential Transformation Method (미분변환법을 이용한 축대칭 원판의 자유 진동 해석)

  • Shin, Young-Jae;Yun, Jong-Hak;Jy, Young-Chel;Kim, Jun-Nyen;Ferdinand, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.604-607
    • /
    • 2005
  • The free vibration of solid circular plates has been studied using the differential transformation method(DTM). The effects such as mass at edge and elastic restraints have been considered. In order to avoid the singularity problem at the solid circular center two regularity conditions were applied with respect to the number of circumferential nodal line. The non-dimensional natural frequencies of the general circular plates were obtained for various boundary conditions. The results obtained by this method were compared with previous works. DTM showed fast convergency, accuracy, efficiency and validity in solving vibration problem of general circular plates.

  • PDF

Natural Frequencies for Inhomogeneous Beams by Differential Transformation (미분변환에 의한 비균질 보의 진동해석)

  • Mun, Kwon-Kyung;Jae, Shin-Yung;Ryu, Yung-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents the application of the technique of differential transformation to find the vibration frequencies for inhomogeneous beams with one sliding support, the other clamped and the other pinned boundary conditions. Numerical calculations are carried out. The frequencies obtained from the differential-transformation solutions are compared to published results to demonstrate the accuracy and flexibility of the method.

  • PDF

Free Vibration Analysis of Circular Cylindrical Shell Structures with Elastic Supports by the Transfer Influence Coefficient Method (전달영향계수법에 의한 탄성지지를 갖는 원통형 셀구조물의 자유진동해석)

  • 문덕홍;여동준
    • Journal of KSNVE
    • /
    • 제4권4호
    • /
    • pp.469-478
    • /
    • 1994
  • This paper desfcribes the formulation for the analysis of the free vibration of a circular cylindrical shell with elastic supports by the transfer influence coefficient method. This method was developed on the base of the concept of the successive transmission of dynamic influence coefficients. The analysis algorithm for circular cylindrical shell elastically restrained by springs, which plays an important role in many industrial fields, is discussed. The supporting springs have the axial, circumferential, radial and rotational spring constants uniformly distributed along the circumference of the shell. The simple computational results on a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy, the high speed analysis method and the flexibility for programming, compared with results of the transfer matrixmethod and reference. We also confirmed that the present algorithm could obtain the solutions of high accuracy for system with a number of intermediate rigid supports. And we could easily treat the intermediate support and all boundary conditions by adequately varying the values of spring constants.

  • PDF

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • 제5권2호
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.

EN 1991-2 traffic loads design charts for closed rib orthotropic deck plate based on Pelikan-Esslinger method

  • Vlasic, Andjelko;Radic, Jure;Savor, Zlatko
    • Steel and Composite Structures
    • /
    • 제9권4호
    • /
    • pp.303-323
    • /
    • 2009
  • Charts for the bending moments in the closed rib orthotropic deck plate are derived, based on the method originally introduced by Pelikan and Esslinger. New charts are done for EN 1991-2 traffic load distribution schemes. The governing Huber plate equation is solved utilizing Fourier series for various bridge deck plate boundary conditions. Bending moments are given as a function of deck plate rigidities and span length between cross beams. Old diagrams according to DIN 1072, the new ones according to EN 1991-2 and FE analyses results are compared. For typical bridge orthotropic deck plates, it can be concluded that the new EN 1991-2 traffic loads produce larger mid-span bending moments when two lane schemes are used, then those of DIN 1072. For support moments, DIN 1072 gives larger values for any number of lanes, especially under span lengths of 5m. The relevant differences are up to 25%.

Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions

  • Jamshidi, Sajad;Fallah, N.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.711-722
    • /
    • 2019
  • Considering stress singularities at point support locations, buckling solutions for plates with arbitrary number of point supports are hard to obtain. Thus, new Hp-Cloud shape functions with Kronecker delta property (HPCK) were developed in the present paper to examine elastic buckling of point-supported thin plates in various shapes. Having the Kronecker delta property, this specific Hp-Cloud shape functions were constructed through selecting particular quantities for influence radii of nodal points as well as proposing appropriate enrichment functions. Since the given quantities for influence radii of nodal points could bring about poor quality of interpolation for plates with sharp corners, the radii were increased and the method of Lagrange multiplier was used for the purpose of applying boundary conditions. To demonstrate the capability of the new Hp-Cloud shape functions in the domain of analyzing plates in different geometry shapes, various test cases were correspondingly investigated and the obtained findings were compared with those available in the related literature. Such results concerning these new Hp-Cloud shape functions revealed a significant consistency with those reported by other researchers.

Prediction of Energy Harvesting Efficiency of an Inverted Flag Using Machine Learning Algorithms (머신 러닝 알고리즘을 이용한 역방향 깃발의 에너지 하베스팅 효율 예측)

  • Lim, Sehwan;Park, Sung Goon
    • Journal of the Korean Society of Visualization
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2021
  • The energy harvesting system using an inverted flag is analyzed by using an immersed boundary method to consider the fluid and solid interaction. The inverted flag flutters at a lower critical velocity than a conventional flag. A fluttering motion is classified into straight, symmetric, asymmetric, biased, and over flapping modes. The optimal energy harvesting efficiency is observed at the biased flapping mode. Using the three different machine learning algorithms, i.e., artificial neural network, random forest, support vector regression, the energy harvesting efficiency is predicted by taking bending rigidity, inclination angle, and flapping frequency as input variables. The R2 value of the artificial neural network and random forest algorithms is observed to be more than 0.9.