• Title/Summary/Keyword: Supply diffuser

Search Result 56, Processing Time 0.021 seconds

Performance Improvement of Dielectric Barrier Plasma Reactor for Advanced Oxidation Process (고급산화공정용 유전체 장벽 플라즈마 반응기의 성능 개선)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.459-466
    • /
    • 2012
  • In order to improved treatment performance of dielectric barrier discharge (DBD) plasma, plasm + UV process and gas-liquid mixing method has been investigated. This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical). The basic DBD plasma reactor of this study consisted of a plasma reactor (consist of quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode), air and power supply system. Improvement of plasma reactor was done by the combined basic plasma reactor with the UV process, adapt of gas-liquid mixer. The effect of UV power of plasma + UV process (0~10 W), gas-liquid mixing existence and type of mixer, air flow rate (1~6 L/min), range of diffuser pore size (16~$160{\mu}m$), water circulation rate (2.8~9.4 L/min) and UV power of improved plasma + UV process (0~10 W) were evaluated. The experimental results showed that RNO degradation of optimum plasma + UV process was 7.36% higher than that of the basic plasma reactor. It was observed that the RNO decomposition of gas-liquid mixing method was higher than that of the plasma + UV process. Performance for RNO degradation with gas-liquid mixing method lie in: gas-liquid mixing type > pump type > basic reactor. RNO degradation of improved reactor which is adapted gas-liquid mixer of diffuser type showed increase of 17.42% removal efficiency. The optimum air flow rate, range of diffuser pore size and water circulation rate for the RNO degradation at improved reactor system were 4 L/min, 40~$100{\mu}m$ and 6.9 L/min, respectively. Synergistic effect of gas-liquid mixing plasma + UV process was found to be insignificant.

Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle (이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

Filtration Performance in MSBR (Membrane-Coupled Sequencing Batch Reactor) using a Membrane for Both Filtration and Aeration (막결합형 연속회분식 생물반응조에서 여과 및 공기공급용으로 분리막을 사용할 때 공기공급이 막여과 성능에 미치는 영향)

  • Ryu, Kwan-Young;Park, Pyung-Kyu;Lee, Chung-Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.337-346
    • /
    • 2005
  • An MSBR using a membrane for not only filtration but also aeration (MA-MSBR) was designed to reduce membrane fouling and to enhance water quality, and compared with an MSBR using a membrane for only filtration (BA-MSBR). COD removal efficiency of the MA-MSBR was similar to that of the BA-MSBR, but membrane performance of the MA-MSBR was better than that of the BA-MSBR. The MA-MSBR had more small particles in mixed liquor, so the specific cake resistance of flocs in the MA-MSBR was higher than that in the BA-MSBR. However, in the aerobic reaction step of the MA-MSBR, air went through membrane pores and out of the membrane surface, so cake layers on the membrane surface and a portion of organics adsorbed on membrane pores could be removed periodically. Therefore, cake resistance, $R_c$, and fouling resistance by adsorption and blocking, $R_f$, for the MA-MSBR increased more slowly than those for the BA-MSBR. Additionally, in order to compare the energy efficiency for two MSBRs, oxygen transfer efficiency and power to supply air into the reactor by a membrane module and a bubble stone diffuser were measured using deionized water. From these measurements, the transferred oxygen amount per unit energy was calculated, resulting that of MA-MSBR was slightly higher than that of BA-MSBR.

The Ejector Design and Test for 5kW MCFC System (5kW 용융탄산염 연료전지(MCFC) 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyeong;Lee, Jung-Hyun;Lee, Sung-Yoon;Kim, Jin-Yoel;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • An ejector is a machine utilized for mixing fluid, maintaining a vacuum, and transporting fluid. The Ejector enhances system efficiency, are easily operated, have a mechnically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 5 kW Molten Carbonate Fuel Cell system at KEPRI(Korea Electric Power Research Institute). In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat in the designed ejector. This helps to define important criteria of ejectors for MCFC recycling.

Post Occupancy Evaluation for Office Building with An Underfloor Air Distribution System (바닥공조 시스템이 적용된 사무공간의 거주후 성능평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Jung, Hae-Kwon;Choi, Sun-Kyu;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.78-85
    • /
    • 2011
  • In this study, an underfloor air distribution(UFAD) system installed on the S. office building was evaluated for its indoor environmental quality performance. Field measurement and survey were conducted for the overall POE(Post Occupied Evaluation). PMV(including temperature, humidity, air velocity and globe temperature) and several environmental components were measured while thermal comfort, thermal sensation, acoustical environment and others. were investigated through survey. Except for the direct upper part of the air supply diffuser on the floor, the indoor velocity was less than 0.25m/s, which has been suggested by ASHRAES tandard 55 as the limit for thermal comfort. MRT of the perimeter zone of the room showed a higher value than that in the interior because of the introduced solar radiation through the building envelope. PMV was generally maintained in the range of thermal comfort (from -0.5 to +0.5), though it weighted to the warm side. It was reported to have 61% positive response on thermal comfort and 55% on neutral thermal sensation. The results of each survey item showed some gender-based differences. Specifically, female respondents had higher degree of dissatisfaction with indoor air cleanness and acoustical privacy. The working surface showed more than 400 lux and the equivalent noise level showed less than 50 dB(A). In conclusion, the results of the measurement and survey showed good agreement. Indoor environmental quality of the subject office room where the UFAD system was installed showed an overall excellent performance.

Oxygen Transfer Efficiencies of A Single Spiral Roll Aeration System by the Off-gas Method (Off-gas Analyzer를 이용한 하수처리장 단일선회류 방식 포기시스템 산소전달 효율의 평가)

  • Park, Bo Hwa;Ko, Kwang Baik;Park, Jae Han;Lim, Se Ho;Shin, Dong Rok;Yun, Hye Jung;Lee, Ji Young;Moon, Tae Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.534-539
    • /
    • 2006
  • The supply of oxygen for aeration is the largest energy consumer at activated sludge wastewater treatment plants. Replacement of less efficient aeration systems with fine pore aeration devices can save up to 50 percent of aeration energy costs. The purpose of this study was the diagnosis and evaluation of a domestic wastewater aeration system by the off-gas method which had been studied by US EPA and ASCE. For this study, an off-gas analyzer and its hood were made to collect off-gas. Also, a vacuum pump was connected to the analyzer to make suction of off-gas. Experiments were conducted at a domestic activated sludge wastewater treatment plant which had a single spiral roll aeration system installed with P.E tube diffuser. Data on OTE(f), SOTE(pw), OUR, and air flow rate were obtained from these experiments. In case of replacing an aeration system, it is recommended that it should be replaced with perforated membrane disc or ceramic disc fine bubble diffusers installed in a full floor coverage or grid pattern.