• Title/Summary/Keyword: Supply diffuser

Search Result 56, Processing Time 0.025 seconds

Effect of Supply and Return Locations of a Floor-Supply Cooling System on Thermal Comfort

  • Kim, Young-Il;Kim, Jo-Seph;Yoo, Ho-Seon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.37-46
    • /
    • 2001
  • This study numerically investigates thermal comfort of a space cooled by a floor-supply air-conditioning system, in which three different combinations of supply and return locations, one floor-supply/ceiling-return and two floor-supply/floor-return, are treated. A complementary experiment is performed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through a diffuser is developed for efficient simulations. The calculated results show that the ceiling-return type is far better in terms of thermal comfort than the floor-return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor-supply/floor-return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present considerations.

  • PDF

The Starting Characteristics of the Steady Ejector-Diffuser System

  • Gopalapillai, Rajesh;Kim, Heuy-Dong;Matsuo, Shigeru;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.680-685
    • /
    • 2008
  • The ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. In general, it consists of a primary driving nozzle, a mixing section, and a diffuser. The ejector system entrains the secondary flow through a shear action generated by the primary jet. Until now, a large number of researches have been made to design and evaluate the ejector systems, where it is assumed that the ejector system has an infinite secondary chamber which can supply mass infinitely. However, in almost all of the practical applications, the ejector system has a finite secondary chamber implying steady flow can be possible only after the flow inside ejector has reached an equilibrium state after the starting process. To the authors' best knowledge, there are no reports on the starting characteristics of the ejector systems and none of the works to date discloses the detailed flow process until the secondary chamber flow reaches an equilibrium state. The objective of the present study is to investigate the starting process of an ejector-diffuser system. The present study is also planned to identify the operating range of ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the one and only condition in which an infinite mass entrainment is possible is the generation of a recirculation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point.

  • PDF

Measurements of Ventilation Effectiveness in an Underfloor Air-Conditioned Space Using a Tracer Gas Technique

  • Han, Hwa-Taik;Seo, S.Y.;Kim, M.H.;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.91-100
    • /
    • 1999
  • This paper investigates ventilation characteristics of an environmental chamber simulating an under-floor air conditioning system for isothermal and cooling supply air conditions. The tracer gas sulfur-hexafluoride (SF$F_6$) was injected into a supply duct using step-up and step-down methods. Local mean and room mean ages were calculated from the concentrations measured at internal points and at the exhaust duct. The air change efficiency of the chamber has been found to be greater in cooling conditions than in isothermal conditions. Also the room air change efficiency is not significantly affected but slightly improved by the presence of a supply diffuser.

  • PDF

A Study on the Performance of the Hybrid Ventilation System for Apartment Houses (공동주택의 하이브리드 환기시스템 성능평가 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sang-Hee
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.89-96
    • /
    • 2012
  • The purpose of this study was to evaluate the applicability of hybrid ventilation system in apartment housings and present a design method to improve the performance of hybrid ventilation system using the CFD simulation. As the object of CFD simulation, a small apartment houses with area of $51m^2$ and $81m^2$ were selected and evaluated. The test hybrid ventilation system are window frame natural air supply & duct exhaust hybrid system(Hybrid 1) and window frame natural air supply & bathroom and livingroom exhaust hybrid ventilation system(Hybrid 2). To evaluate the ventilation efficiency, we used the locations of diffuser installed for each system as the variables through the CFD simulation. In the case of Hybrid 1, the ventilation efficiency of the exhaust duct diffuser located on the inside room was higher rather than the exhaust duct diffuser located on the entrance. In the case of Hybrid 2, the most efficient system was the system that the diffuser connecting the bathroom static pressure fan is installed on the center of the living room. The ventilation efficiency of the Hybrid 2 in the case of $51m^2$ type was more than 20% of the Hybrid 1. But, The ventilation efficiency of the Hybrid 2 in the case of $84m^2$ type was more than 14% of the Hybrid 1. Therefore, to apply the Hybrid ventilation, a study that considers various variable should be conducted.

Performance Evaluation of Multidrop Chamber Ventilation System in Apartment (공동주택내 다분기챔버형 환기시스템 적용을 통한 풍량분배 개선효과에 관한 연구)

  • Kim, Sung-Soo;Son, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.545-552
    • /
    • 2009
  • It is common to design the duct branches where to supply the required air flow for individual room in residential apartment house. And TAB process is applied to control the designed air volume with adjusting volume dampers and/or supply diffusers after fully installing the ventilation system. This process has been resulted increasing the initial cost for the residential ventilation system because of man-hour and accessories such as volume control damper or diffuser. However it is difficult to adjust the air volume adequately in small air duct branches in residential ventilation system. The purpose of this study is to figure out the performance of Multidrop chamber coupling system for the residential ventilation system.

Effect of Aeration on Fertilization and Sludge Accumulation of Pig Slurry (돼지분뇨 슬러리 액비화시 폭기가 액비특성 및 슬러지 형성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Lee, Myung-Gyu;Kim, Jung-Gon;Han, Duk-Woo;Kwag, Jung-Hun
    • Journal of Animal Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • Two types of reactors were set to investigate the change of characteristics of pig slurry by aeration during fertilization period. One system was equipped with air diffuser to supply oxygen to pig slurry for liquid fertilization, but there was no air diffuser in the other system. Air supply to the experimental systems was regulated by air flow meter. The reactors were set up in the laboratory to protect the pig slurry from external condition such as temperature and humidity changes. Maintaining optimal pH range in the experimental reactors is an important factor for liquid fertilization of pig slurry. In this study, pH ranges of aerobic reactor and anoxic reactor was 7.04~7.19 and 7.34~7.81, respectively. The temperature of aerobic reactors was $2{\sim}3^{\circ}C$ higher then indoor temperature. The amount of sludge accumulated at the bottom layer of non-aerated reactors was 4~5 times more than that of aerated reactors.

Concept Design on Heating System for Supersonic Air-Breathing Engine Test Facility (초음속 유도무기 지상 시험용 가열기 개념 설계)

  • Han Poong-Gyoo;NamKoung Hyuck-Joon;Lee Kyoung-Hoon;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.321-326
    • /
    • 2006
  • Vitiated air heater which could supply air of 700K and 6 bar was designed conceptually for the firing test on the ground of the air breathing propulsion engines. This vitiated air heater consists of premixer with air and excessive gas oxygen, mixing head, combustor with gas passage, convergent-divergent nozzle and diffuser. the fuel was natural gas and/or liquefied natural gas. Through computational fluid dynamics, each component of the air heater was analyzed and flame-holding after ignition was investigated.

  • PDF

The Design and Performance Test of a Centrifugal Compressor for HFC-134a Refrigerant (HFC-134a용 원심압축기의 성능시험 및 설계방안)

  • Sin, Jung-Kwan;Kim, Kyung-Hoon;Kang, Shin-Hyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.139-148
    • /
    • 2010
  • A centrifugal compressor for HFC-134a has been newly designed and developed. Flow analysis using commercial programs was used to evaluate performance and internal flow of the impeller, inlet guide vane and diffuser etc. The purpose of this study is to establish the design theory necessary to the development of HFC-134a centrifugal compressors and to supply basic data related to design by reviewing design values and experimental values through the performance test. The compressor for HFC-134a was also investigated experimentally to check compression performance. The calculated data coincide the test results of compressor. The data obtained in the present study are useful for design of HFC-134a centrifugal compressors.

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계)

  • 이양지;차봉준;양수석;김형진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.13-19
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blowdown type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm$\times$200mm).

  • PDF