• Title/Summary/Keyword: Supply Air Temperature

Search Result 475, Processing Time 0.031 seconds

Application of CFD Simulation to Cooling System Design of Agricultural Products Processing Center Workplace (농산물산지유통센터 작업장의 냉방 설계를 위한 CFD 시뮬레이션 적용)

  • Kwon, Jin-Kyung;Lee, Sung-Hyun;Moon, Jong-Pil;Lee, Su-Jang;Kim, Keyong-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.195-202
    • /
    • 2010
  • Cooling air-conditioning of APC (Agricultural Products processing Center) workplace is important to improve the working environment in the summer season. As existing cooling systems for air-conditioning of whole workplace are inefficient because of their high equipment operating costs, relatively inexpensive cooling system is required. The objectives of this study were to simulate the thermal flow fields in APC workplace having the positive and negative pressure type fan and pad systems and spot cooling system by using CFD software (FLUENT, 6.2) and estimate the cooling effectiveness of respective cooling systems. The results showed that the negative pressure type fan and pad system was inappropriate for the present APC workplace because of excessive outside air influx from open gateway and the positive pressure type fan and pad system created relatively low temperature field but non-uniform velocity field at worker positions. The spot cooling system could supply cool air to worker positions with relatively constant air velocity and temperature.

Establishment of Fatigue Life Evaluation and Management System for District Beating Pipes Considering Operating Temperature Transition Data (운전이력을 고려한 지역난방 열배관의 피로수명 평가 및 관리 체계 구축)

  • Chang Yoon-Suk;Jung Sung-Wook;Kim Hyeong-Keun;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1235-1242
    • /
    • 2005
  • A district heating(DH) system supplies environmentally-friend heat and is appropriate for reduction of energy consumption and/or air pollutions. The DH transmission pipe, composed of supply and return pipes, has been used to transmit the heat and prevent heat loss during transportation. The two types of pipes are operated at a temperature of $75\~115^{\circ}C\;and\;40\~65^{\circ}C$, respectively, with an operating pressure of less than 1.568MPa. The objectives of this paper are to systematize data processing of transition temperature and investigate its effects on fatigue life of DH pipes. For the sake of this, about 5 millions temperature data were measured during one year at ten locations, and then available fatigue lift estimation schemes were examined and applied to quantify the specific thermal fatigue life of each pipe. As a result, a relational database management system as well as reliable fatigue lift evaluation procedures is established for Korean DH pipes. Also, since the prototypal evaluation results satisfied both cycle-based and stress-based fatigue criteria, those can be used as useful information in the future fer optimal design, operation and energy saving via setting of efficient condition and stabilization of water temperature.

EFFECT OF TOP END CONDITION OF FUEL BED CONTAINER ON DOWNWARD SMOLDER SPREAD

  • Sato, Kenji;Sakai, Yasuhiro
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.146-153
    • /
    • 1997
  • An experimental study was performed of natural-convection downward smolder spread across a sawdust bed peripherally enclosed with an insulating container, to examine the effect of the open- ing condition at the top end on downward smolder spread. Experiments were conducted by using relatively coarse sawdust and 25-cm-long cylindrical container The variations of temperature profiles along the bed axis with time were determined far different opening conditions and were com-pared with those in smolder spread from open top to open bottom. It was shown that the smolder zone initiated from open top toward closed bottom penetrates the bed with keeping high peak temperature like the case of open top to open bottom spread, although mean spread rate is smaller. This indicates that the downward smolder zone can be sustained stably if sufficient air or oxygen Is supplied from the back of it by natural convection even if upward draft entering from the bottom of the bed is absent. When the top end was partially closed by mounting a cover after stable smolder spread had begun from open top toward open bottom, the temperature at the peak decreased more than 200 K and the smolder zone became to spread with thickening residue. In this case, the shape of temperature profiles continuously changed or decayed until end-effect at the open bottom end enhanced the reaction. The temperature at the shrunk peak, free from the end-effect, was almost identical with the temperature at the exothermic oxidative-degradation zone in smolder spread from open top to open bottom. from these results, it can be inferred for natural-convection downward smolder spread that the oxidation reaction of the char is very sensitive to the oxygen supply by natural convection in the space above the smolder zone, and that the top end opening condition strongly alters the completeness of reactions, structure, and behavior of the smolder zone.

  • PDF

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

Numerical Study on Thermal Performances of Multi Heat Source Heating System Using Butane for Electric Vehicle (전기자동차용 부탄 연료 복합열원 히팅시스템의 열적 성능에 관한 수치적 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Patil, Mahesh Suresh;Cho, Chong-Pyo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.725-731
    • /
    • 2016
  • This study numerically investigates the thermal performance of a 2.0-kW butane-based combustion heating system for an electric vehicle under cold conditions. The system is used for cabin space heating and coolant-based battery thermal management. ANSYS CFX 17 software was used for parametric analysis. The mass flow rates of cold air and coolant were varied, and their effects were compared. The numerical results were validated with theoretical studies, which showed an error of 0.15%. As the outside air mass flow rates were increased to 0.005, 0.01, and 0.015 kg/s, the cabin supply air temperature decreased continuously while the coolant outlet temperature increased. When the coolant mass flow rates were increased to 0.005, 0.01 and 0.015 kg/s, the air temperature increased while the coolant outlet temperatures decreased. The optimal mass flow rates are discussed in a consideration of the requirements for high cabin heating capacity and efficient battery thermal management.

Effect of Growth Conditions on Lactic acid bacteria Isolated from Kimchi

  • Joe, Lim;Kwun, Kyu-Hyuk;Lee, Jung-Heon
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.124-128
    • /
    • 2005
  • This studies were carried out to investigate optimal conditions for Lactic acid bacteria growth, which was grown in a batch fermenter. The optimal temperature was $30^{\circ}C$, optimal pH was 6.5 and agitation speed was 100rpm and didn't supply the air. Used media compositions were yeast extract 5g/L, peptone 10g/L, sugar 20g/L, beef extract 10g/L, tween 80 1ml/L, ammonium citrate 2g/L, sodium acetate 5g/L, magnesium sulfate 0.1g/L, manganese sulfate 0.05g/L, dipotassium phosphate 2g/L. These results would be useful for enhancing lactic acid bacteria concentration.

  • PDF

A study on the part-load performance of 2-stage water source heat pump (2단 압축 수열원 열펌프 시스템의 부분부하 운전특성에 관한 연구)

  • Lee, Young-Soo;Baik, Young-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • The river water heat source heat pump has the advantage in the performance compared to air source heat pump. In this study, an experimental study on a 2-stage heat pump, which is designed to utilize a river water heat source, were carried out. Generally, a heat pump is designed for maximum capacity rate, but it actually operates at part load condition in most cases. Therefore, an information on the part-load characteristic is very important in view of the system overall performance. In this study, part-load performance tests of a R134a 2-stage compression heat pump were carried out over the river water and supply heating water temperature changes.

  • PDF

A Three-Dimensional Numerical Model for the Investing of Combustion Characteristics and Optimization of Operating Performances in Municipal Waste Incinerator (도시 폐기물 소각로의 연소특성 및 운전성능 최적화를 위한 3차원 수치모델링)

  • 전영남;정오진;송형운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • In this study, a 3-dimensional numerical model, has been developed applied for the investigation of combustion characteristics, and used to optimize operating conditions in MSW incinerator, in Gwangju. The model developed in this study has been verified by exacting both the predicted and the measured temperature in combustion chamber which has been operated to provide a reference condition. By predictive results, the Sangmoo incinerator has a good characteristics of combustion and low emission however after burning zone produced incomplete products, also probably because the supply of primary air was not enough. Parametric screening studies have been conducted to study optimal operating conditions. For the optimal combustion characteristics, operating conditions should be adjusted with the waste properties.

A Study on the Characteristic of the Thermal Environment in the Cooling System at the Apartment (공동주택 거실의 냉방방식에 따른 열환경 특성에 관한 연구)

  • 이무진
    • Journal of the Korean housing association
    • /
    • v.10 no.4
    • /
    • pp.111-120
    • /
    • 1999
  • The purpose of this study is to evaluate the efficiency of the thermal environment created by the cooling system at the apartment that combines the forced convection cooling(the system reducing humidity from room) with the floor cooling radiation which uses the floor panel from floor heating system, a general residential heating system in Korea. In this study, the combined cooling system in which air supply, spurt temperature difference and interior draft are reduced, is compared with the existing forced convection cooling system. To identify the effect of the comparison concretely, a comparative experiment is carried out on tour conditions, ie, convection cooling, floor radiation convection cooling and floor radiation cooling. Through it the characteristical thermal environment formed within the model room is analyzed, and the conveying system of compressed floor chill and condensation problem are reviewed.

  • PDF

Development of injection lance position control method using fine Bituminous Coal combustion Image Analysis (미분탄 화염 영상 분석을 통한 취입랜스 최적 제어 기법 개발)

  • Kim, Chi-Yen;Lee, Min-Cheol;Baek, Jun-Young;Jeong, Do-Young;Ahn, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.806-810
    • /
    • 2008
  • This paper introduces the automatic fine Bituminous Coal injection lance position control method using flame image process. The fine Coal injection lance is used to supply additional heat into the furnace in Mill plant. It injects fine coal into high pressured air flow and produces very heated and high pressured flame. For the such high temperature and pressure, the fine coal injection lance effects not only efficiency of burner but also furnace abrasion. To keep efficient combustion status and to avoid the abrasion, in this paper, the flame is monitored by computer image process. This paper proposes the flame image process method and lance position control according to calculated result for flame image process.

  • PDF