• Title/Summary/Keyword: Supervised clustering

Search Result 115, Processing Time 0.027 seconds

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Hierarchical multi-task learning with self-supervised auxiliary task (HiSS: 자기 지도 보조 작업을 결합한 계층적 다중 작업 학습)

  • Seunghan Lee;Taeyoung Park
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.5
    • /
    • pp.631-641
    • /
    • 2024
  • Multi-task learning is a popular approach in machine learning that aims to learn multiple related tasks simultaneously by sharing information across them. In this paper, we consider a hierarchical structure across multiple related tasks with a hierarchy of sub-tasks under the same main task, where representations used to solve the sub-tasks share more information through task-specific layers, globally shared layers, and locally shared layers. We thus propose the hierarchical multi-task learning with self-supervised auxiliary task (HiSS), which is a novel approach for hierarchical multi-task learning that incorporates self-supervised learning as an auxiliary task. The goal of the auxiliary task is to further extract latent information from the unlabeled data by predicting a cluster label directly derived from the data. The proposed approach is tested on the Hyodoll dataset, which consists of user information and activity logs of elderly individuals collected by AI companion robots, for predicting emergency calls based on the time of day and month. Our proposed algorithm is more efficient than other well-known machine learning algorithms as it requires only a single model regardless of the number of tasks, and demonstrates superior performance in classification tasks using various metrics. The source codes are available at: https://github.com/seunghan96/HiSS.

Identifying potential mergers of globular clusters: a machine-learning approach

  • Pasquato, Mario
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.89-89
    • /
    • 2014
  • While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.

  • PDF

Improvement of Network Intrusion Detection Rate by Using LBG Algorithm Based Data Mining (LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상)

  • Park, Seong-Chul;Kim, Jun-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.23-36
    • /
    • 2009
  • Network intrusion detection have been continuously improved by using data mining techniques. There are two kinds of methods in intrusion detection using data mining-supervised learning with class label and unsupervised learning without class label. In this paper we have studied the way of improving network intrusion detection accuracy by using LBG clustering algorithm which is one of unsupervised learning methods. The K-means method, that starts with random initial centroids and performs clustering based on the Euclidean distance, is vulnerable to noisy data and outliers. The nonuniform binary split algorithm uses binary decomposition without assigning initial values, and it is relatively fast. In this paper we applied the EM(Expectation Maximization) based LBG algorithm that incorporates the strength of two algorithms to intrusion detection. The experimental results using the KDD cup dataset showed that the accuracy of detection can be improved by using the LBG algorithm.

  • PDF

Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter (자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.311-320
    • /
    • 2003
  • The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.

Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection (실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘)

  • Hwang, Kyoung-Ae;Oh, Ha-Young;Lim, Ji-Young;Chae, Ki-Joon;Nah, Jung-Chan
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.649-658
    • /
    • 2005
  • Since the Network based attack Is extensive in the real state of damage, It is very important to detect intrusion quickly at the beginning. But the intrusion detection using supervised learning needs either the preprocessing enormous data or the manager's analysis. Also it has two difficulties to detect abnormal traffic that the manager's analysis might be incorrect and would miss the real time detection. In this paper, we propose a traffic attributes correlation analysis mechanism based on self-organizing maps(SOM) for the real-time intrusion detection. The proposed mechanism has three steps. First, with unsupervised learning build a map cluster composed of similar traffic. Second, label each map cluster to divide the map into normal traffic and abnormal traffic. In this step there is a rule which is created through the correlation analysis with SOM. At last, the mechanism would the process real-time detecting and updating gradually. During a lot of experiments the proposed mechanism has good performance in real-time intrusion to combine of unsupervised learning and supervised learning than that of supervised learning.

A Novel of Data Clustering Architecture for Outlier Detection to Electric Power Data Analysis (전력데이터 분석에서 이상점 추출을 위한 데이터 클러스터링 아키텍처에 관한 연구)

  • Jung, Se Hoon;Shin, Chang Sun;Cho, Young Yun;Park, Jang Woo;Park, Myung Hye;Kim, Young Hyun;Lee, Seung Bae;Sim, Chun Bo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.465-472
    • /
    • 2017
  • In the past, researchers mainly used the supervised learning technique of machine learning to analyze power data and investigated the identification of patterns through the data mining technique. Data analysis research, however, faces its limitations with the old data classification and analysis techniques today when the size of electric power data has increased with the possible real-time provision of data. This study thus set out to propose a clustering architecture to analyze large-sized electric power data. The clustering process proposed in the study supplements the K-means algorithm, an unsupervised learning technique, for its problems and is capable of automating the entire process from the collection of electric power data to their analysis. In the present study, power data were categorized and analyzed in total three levels, which include the row data level, clustering level, and user interface level. In addition, the investigator identified K, the ideal number of clusters, based on principal component analysis and normal distribution and proposed an altered K-means algorithm to reduce data that would be categorized as ideal points in order to increase the efficiency of clustering.

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

Bag-of-Words Scene Classification based on Supervised K-means Clustering (장면 분류를 위한 클래스 기반 클러스터링)

  • Kim, Junhyung;Ryu, Seungchul;Kim, Seungryong;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.248-251
    • /
    • 2013
  • 컴퓨터 비전에서 BoW를 이용한 장면 분류 기법에 대한 연구가 활발히 진행되고 있다. BoW 기법의 장면 분류는 K-means 클러스터링을 통하여 코드북을 생성하는 과정에서 트레이닝 이미지의 클래스 정보를 활용하지 않기 때문에 성능이 제한적이라는 문제점을 가지고 있다. 본 논문에서는 BoW를 이용한 장면 분류 과정에서 코드북 생성을 위하여 각각 특징 기술자들의 유클리디안 거리뿐만이 아니라 클래스 확률 밀도 함수들의 히스토그램 교차값을 최소화 하는 최적화 K-means 클러스터링 기법을 제안한다. 장면의 SIFT 특징 기술자 정보뿐만 아니라 장면이 속해있는 클래스 정보를 결합하여 클러스터링을 수행함으로써 장면 분류의 정확도를 높일 수 있다. 장면 분류 정확도 실험에서 제안하는 클러스터링을 사용한 BoW 장면 분류 기법은 기존의 K-means을 사용한 BoW 장면 분류 기법보다 높은 정확도를 보여준다.

  • PDF

Reduced RBF Centers Based Multiuser Detection in DS-CDMA System

  • Lee, Jung-Sik;Hwang, Jae-Jeong;Park, Chi-Yeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1085-1091
    • /
    • 2006
  • The major goal of this paper is to develop a practically implemental radial basis function (RBF) neural network based multi-user detector (MUD) for direct sequence (DS)-CDMA system. This work is expected to provide an efficient solution for RBF based MUD by quickly setting up the proper number of RBF centers and their locations required in training. The basic idea in this research is to estimate all the possible RBF centers by using supervised ${\kappa-means$ clustering technique, and select the only centers which locate near seemingly decision boundary between centers, and reduce further by grouping the some of centers adjacent each other. Therefore, it reduces the computational burden for finding the proper number of RBF centers and their locations in the existing RBF based MUD, and ultimately, make its implementation practical.