• Title/Summary/Keyword: Supervised clustering

Search Result 115, Processing Time 0.023 seconds

Modeling of Self-Constructed Clustering and Performance Evaluation (자기-구성 클러스터링의 모델링 및 성능평가)

  • Ryu Jeong woong;Kim Sung Suk;Song Chang kyu;Kim Sung Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.490-496
    • /
    • 2005
  • In this paper, we propose a self-constructed clustering algorithm based on inference information of the fuzzy model. This method makes it possible to automatically detect and optimize the number of cluster and parameters by using input-output data. The propose method improves the performance of clustering by extended supervised learning technique. This technique uses the output information as well as input characteristics. For effect the similarity measure in clustering, we use the TSK fuzzy model to sent the information of output. In the conceptually, we design a learning method that use to feedback the information of output to the clustering since proposed algorithm perform to separate each classes in input data space. We show effectiveness of proposed method using simulation than previous ones

Informative Gene Selection Method in Tumor Classification

  • Lee, Hyosoo;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 2004
  • Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.

A Study on Big-5 based Personality Analysis through Analysis and Comparison of Machine Learning Algorithm (머신러닝 알고리즘 분석 및 비교를 통한 Big-5 기반 성격 분석 연구)

  • Kim, Yong-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.169-174
    • /
    • 2019
  • In this study, I use surveillance data collection and data mining, clustered by clustering method, and use supervised learning to judge similarity. I aim to use feature extraction algorithms and supervised learning to analyze the suitability of the correlations of personality. After conducting the questionnaire survey, the researchers refine the collected data based on the questionnaire, classify the data sets through the clustering techniques of WEKA, an open source data mining tool, and judge similarity using supervised learning. I then use feature extraction algorithms and supervised learning to determine the suitability of the results for personality. As a result, it was found that the highest degree of similarity classification was obtained by EM classification and supervised learning by Naïve Bayes. The results of feature classification and supervised learning were found to be useful for judging fitness. I found that the accuracy of each Big-5 personality was changed according to the addition and deletion of the items, and analyzed the differences for each personality.

Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Su;Baek Yong-Seon;Lee Se-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

The use of support vector machines in semi-supervised classification

  • Bae, Hyunjoo;Kim, Hyungwoo;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.193-202
    • /
    • 2022
  • Semi-supervised learning has gained significant attention in recent applications. In this article, we provide a selective overview of popular semi-supervised methods and then propose a simple but effective algorithm for semi-supervised classification using support vector machines (SVM), one of the most popular binary classifiers in a machine learning community. The idea is simple as follows. First, we apply the dimension reduction to the unlabeled observations and cluster them to assign labels on the reduced space. SVM is then employed to the combined set of labeled and unlabeled observations to construct a classification rule. The use of SVM enables us to extend it to the nonlinear counterpart via kernel trick. Our numerical experiments under various scenarios demonstrate that the proposed method is promising in semi-supervised classification.

Fuzzy Neural Network Model Using A Learning Rule Considering the Distances Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo;Baek Yong-Sun;Lee Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.460-465
    • /
    • 2006
  • This paper presents a new fuzzy learning rule which considers the Euclidean distances between the input vector and the prototypes of classes. The new fuzzy learning rule is integrated into the supervised IAFC neural network 4. This neural network is stable and plastic. We used iris data to compare the performance of the supervised IAFC neural network 4 with the performances of back propagation neural network and LVQ algorithm.

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.800-804
    • /
    • 2005
  • This paper presents a fuzzy learning rule which is the fuzzified version of LVQ(Learning Vector Quantization). This fuzzy learning rule 3 uses fuzzy learning rates. instead of the traditional learning rates. LVQ uses the same learning rate regardless of correctness of classification. But, the new fuzzy learning rule uses the different learning rates depending on whether classification is correct or not. The new fuzzy learning rule is integrated into the improved IAFC(Integrated Adaptive Fuzzy Clustering) neural network. The improved IAFC neural network is both stable and plastic. The iris data set is used to compare the performance of the supervised IAFC neural network 3 with the performance of backprogation neural network. The results show that the supervised IAFC neural network 3 is better than backpropagation neural network.

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • Kim, Yong-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Constrained Sparse Concept Coding algorithm with application to image representation

  • Shu, Zhenqiu;Zhao, Chunxia;Huang, Pu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3211-3230
    • /
    • 2014
  • Recently, sparse coding has achieved remarkable success in image representation tasks. In practice, the performance of clustering can be significantly improved if limited label information is incorporated into sparse coding. To this end, in this paper, a novel semi-supervised algorithm, called constrained sparse concept coding (CSCC), is proposed for image representation. CSCC considers limited label information into graph embedding as additional hard constraints, and hence obtains embedding results that are consistent with label information and manifold structure information of the original data. Therefore, CSCC can provide a sparse representation which explicitly utilizes the prior knowledge of the data to improve the discriminative power in clustering. Besides, a kernelized version of our proposed CSCC, namely kernel constrained sparse concept coding (KCSCC), is developed to deal with nonlinear data, which leads to more effective clustering performance. The experimental evaluations on the MNIST, PIE and Yale image sets show the effectiveness of our proposed algorithms.