• Title/Summary/Keyword: Superstructure of bridge

Search Result 239, Processing Time 0.03 seconds

A Study on the Rolling Friction Characteristics of Large Scale Roller Shoe for Bridge Supporter (교량받침용 대형 Roller Shoe의 구름마찰특성에 관한 연구)

  • 김영득;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.660-663
    • /
    • 2001
  • There is a mechanical device between the superstructure and substructure of a bridge, which transmit vertical load of superstructure to the substructure and absorb horizontal displacement of super structure due to thermal, dynamic, load, etc. In order to meet two requirements at once, the structure of roller between plates is widely used, and this roller between plates is widely used, and this roller shoe system is known to have smaller horizontal movement resistance than any other type of bridge shoe. In this study, rolling friction resistance characteristics of roller-plate friction system is investigated according to roller dimension, vertical load, hardness and roughness of roller and plate. On the base of the results, the rolling friction resistance of large scale roller shoe is evaluated using model experiment.

  • PDF

Safety Evaluation for PSCI-Beam by Tilt-Constructed with Constraint and Deviation of Bearings (받침의 구속과 편기를 갖는 경사지게 설치된 PSCI빔의 안전성 평가)

  • Park, Chang-Ho;Shin, Jae-In;Lee, Byeong-Ju;Seo, Sang-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.346-349
    • /
    • 2006
  • Superstructure of reinforced concrete bridges are shortened or elongated due to creep, drying shrinkage, temperature and so on. Most of bridge superstructures are free to shortening and elongation without constraint and stresses will not be induced by creep, drying shrinkage and temperature. But if bridge superstructure are constraint due to wrong setting and functional defects of bridge bearing, very large constraint forces can be induced. In this study, PSCI-Beam by tilt-constructed with constraint and deviation of bearings are presented and the effects of time-dependent constraint stress and temperature loads are investigated.

  • PDF

AHP 기법을 이용한 교량상부구조의 VE 검토

  • Park, Jang-Ho;Sin, Yeong-Seok;An, Ye-Jun;Lee, Gwang-Gyun
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.52
    • /
    • pp.58-66
    • /
    • 2011
  • This study presents an algorithm to select the best alternative plane among various bridge superstructure types (Steel box girder, Rational girder, PSC-I girder) using Value Engineering (VE). Economical efficiency, landscape, constructability, maintenance, stability, function of bridge superstructure were taken into consideration in the designing of bridge. Economical efficiency was evaluated for each alternative plan with optimal design considering Life Cycle Cost (LCC), Repair and rehabilitation histories and some factors were set to get reasonable results. In the application of Analytic Hierarchy Process (AHP), consistency of Pairwise Comparisons Matrix was evaluated and the best plan was determined.

  • PDF

Seismic Analysis of the Multi-Span Continuous Bridge Considering the Friction of the Expansion Bearings (가동받침 마찰을 고려한 다경간 연속교의 내진 해석)

  • Juhn, Gui Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the multi-span continuous bridge considering the friction of the expansion bearings. Also the numerical analysis is performed for estimating the effect of the friction on the seismic response of the multi-span continuous bridge under the longitudinal ground motion compatible to Korean bridge design response spectra. It is found that even small friction coefficient of the expansion bearings has significant effect on reducing the superstructure displacement due to energy dissipation and distributing the inertia force of the superstructure to the substructures due to frictional force. It is observed that such favorable friction effects increase as the friction coefficient increases and the magnitude of the ground motion decreases. Therefore, the friction of the expansion bearings can be effectively used for the safe and economic design of the continuous span bridge with many spans and large superstructure weight under the small to medium scale longitudinal ground motions.

  • PDF

An Experimental Study on the Structural Behavior of Steel-Concrete Composite Rahmen Bridge with Hinged End Supports (하단힌지 강합성 라멘교의 구조적 거동에 대한 실험적 연구)

  • Choi, Jin Woo;Jang, Min Jun;Cheon, Jin Uk;Yoon, Soon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.195-205
    • /
    • 2015
  • The rahmen bridge is well known common type of bridge in which all members are connected rigidly. The rahmen bridge is built for several situations because it has many advantages such as no need of bridge bearing system, easy of maintenance, reduction of the cross-sectional area of superstructure, and relatively low construction cost compared with other bridge types. Recently, to lengthen the span of rahmen bridge system, steel-concrete composite beam is used for superstructure of rahmen bridge instead of normal concrete girder with slab. However, member forces are increased because of extension of span length of superstructure and substructure is designed and constructed inefficiently when steel-concrete composite rahmen bridge is designed. In this study, new-type steel-concrete composite bridge is suggested. New-type steel-concrete composite rahmen bridge is adopted hinge connection between abutment and foundation for the reduction of the bending momemt at the foundation. In this study, we present the results of experiment conducted to estimate the load carrying capacity of new-type steel-concrete composite rahmen bridge and the structural characteristics of hinge connection.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.

Analysis of PSC Box Girder Railway Bridge and Design of its Diaphragm using Sturt-and-Tie Model (PSC 박스 거더 철도교량의 해석 및 스트럿-타이 모델에 의한 격벽부 설계)

  • Song, Ha-Won;Kim, Hyoung-Woon;Kim, Young-Hoon;Byun, Keun-Joo
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.30-39
    • /
    • 1998
  • The functions of diaphragms at abutments and piers of PSC box girder railway bridge are to transfer forces from the superstructure onto bearings or columns and to stiffen the superstructure cross-section against in -plane deformation. Due to stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than those for other structural members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from that of the deck slab obtained from two dimensional analysis of the bridge, which is basis for the design of deck slab. In this paper, three dimensional behavior of deck slab near the diaphragm of prestressed concrete (PSC) box girder railway bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling and using the strut-and-tie model design of the diaphragm are presented. The modeling techniques used in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

Arching Action Effect for Inelastic Seismic Responses of Bridge Structures (교량의 비탄성 지진응답에 대한 아칭작용의 영향)

  • Song, Jong-Keol;Nam, Wang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.131-143
    • /
    • 2009
  • Under transverse earthquake shaking, arching action of bridge structures develops along the deck between the abutments thus providing the so-called deck resistance. The magnitude of the arching action for bridge structures is dependent on the number of spans, connection condition between deck and abutment or piers, and stiffness ratio between superstructure and substructure. In order to investigate the arching action effects for inelastic seismic responses of PSC Box bridges, seismic responses evaluated by pushover analysis, capacity spectrum analysis and nonlinear time-history analysis are compared for 18 example bridge structures with two types of span numbers (short bridge, SB and long bridge, LB), three types of pier height arrangement (regular, semi-regular and irregular) and three types of connection condition between superstructure and substructure (Type A, B, C). The arching action effects (reducing inelastic displacement and increasing resistance capacity) for short bridge (SB) is more significant than those for long bridge (LB). Semi-regular and irregular bridge structures have more significant arching action than regular bridges.

Load Redistribution of Prestressed Concrete Girder Bridges during the Bearing Replacement

  • Park, Sun-Kyu;Kim, Hyeong-Yeol;Kim, Jung-Hyuk
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.141-151
    • /
    • 1999
  • In the replacement of bearing system of bridges, the jacking work to secure work spaces may cause damage of the superstructure, hence the behavior of superstructure by the jacking force must be considered. Especially, in prestressed concrete I-type girder bridges, considering the stress concentration at the girder and the load redistribution of superstructure, the allowable jacking force and jacking sequence have to be determined. In this study, an analytical method is proposed to calculate the jacking force and overall jacking sequence for the replacement of bearing system without any damage to the superstructure. The stress concentration at the girder and load redistribution of the deck due to jacking force are considered to compute the allowable jacking force for each girder and overall jacking sequence for girders in the deck. Using the solution algorithm developed in this study, the optimum jacking sequence and required jacking force for the prestressed concrete I-type gilder bridge having the standard sections are calculated.

  • PDF