• Title/Summary/Keyword: Supersonic cavity

Search Result 110, Processing Time 0.022 seconds

Experimental/Computational Study on the Supersonic Cavity Flow with a Sub-Cavity to Reduce the Pressure Oscillation (압력진동을 저감하기 위한 sub-cavity를 가진 초음속 공동유동에 대한 실험 및 수치해석적 연구)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3009-3014
    • /
    • 2007
  • The effectiveness of passive control techniques for alleviating the pressure oscillation generated in a supersonic cavity flow was investigated numerically and experimentally, respectively. The control device includes a sub-cavity installed near the leading edge of a rectangular cavity. Time-dependent supersonic cavity flow characteristics with turbulent features were examined by using the three-dimensional, mass-averaged Navier-Stokes computation based on a finite volume scheme and large eddy simulation. The results show that the pressure oscillation near the trailing edge dominates overall time-dependent cavity pressure variations. Such an oscillation can be attenuated more significantly in the presence of the sub-cavity compared with the cavity without sub-cavity, and a larger sub-cavity leads to better control performance.

  • PDF

An investigation of pressure oscillation in supersonic cavity flow (초음속 Cavity 내에서의 압력 진동 특성 연구)

  • Kim Hyungjun;Kim Sehoon;Kwon Sejin;Park Kunhong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.743-746
    • /
    • 2002
  • Experimental investigation of the flow field of supersonic cavity is described. In this research, supersonic cavity is used in chemical laser system. For efficient laser, downstream flow after cavity need to be uniform and clear for pressure recovery system. In previous research, it's known that there's oscillation In cavity and is due to Mach number and L/D ratio. A strong recompression occurs at the after wall and the flow is visibly unsteady. Cavity flow in this research is of the open type, that is, length-to-depth ratio $L/D<10\;at\;M\;=\;3$. Experiment is done with pressure measurement by piezo-type sensor and visualization by Schlirern method. The time-dependent experimental result is compared with computation.

  • PDF

Experimental Study on Supersonic Combustion Phenomena in the Cavity Duct by the Supersonic Inflow Conditions (초음속 유입 유동 조건에 따른 공동을 포함한 덕트 내 초음속 연소 현상에 관한 실험적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.209-219
    • /
    • 2006
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated at the trailing edge of the cavity and reflects off the top and bottom wall. For non-reacting flow, static pressures in low equivalence ratio are similar to those in no fuel injection. As equivalence ratio is increased, static pressures are increased in the duct. In the similar equivalence ratio, static pressures are increased when total enthalpy is decreased. For reacting flow, the flame is occurred near the cavity. The combustion is weak locally in the middle of the duct. The up and down pressure distribution in the duct means that the supersonic combustion is generated.

  • PDF

Control of the Unsteadiness of Supersonic Cavity Flows (불안정한 초음속 공동유동의 제어)

  • Kang, Min-Sung;Shin, Choon-Sik;Kwon, Joon-Kyeong;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2782-2787
    • /
    • 2008
  • The subcavity passive control technique is used in present study. Cavity-induced pressure oscillation has been investigated numerically for a supersonic three-dimensional flow over rectangular cavities at Mach number 1.83 at the cavity entrance. Time dependent supersonic turbulent flow over cavity were examined by using the three-dimensional, mass-averaged Navier-Stokes equations based on a finite volume scheme and large eddy simulation. The results showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

The Study on Cavity Flow in Supersonic flow field (초음속 유동장에 놓인 공동 유동에 대한 연구)

  • Yoon Y. H.;Hong S. K.;Kwon K. B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.139-143
    • /
    • 2003
  • In this study the numerical analyses on cavity flow in supersonic flow field are conducted. According to the length-to-depth ratio of cavity, the shear layer is changed, consequently influencing on vortex structure inside the cavity. Especially in case the fluid flow outside cavity impinges inside the cavity, the oscillation of the cavity flow is identified. Another result is that though the cavity flow shows the unsteadiness, characteristics of cavity flow can be represented by pressure coefficients converged.

  • PDF

Numerical Analysis of Supersonic Combustion Flows according to Fuel Injection Positions near the Cavity (공동주위 분사위치에 따른 초음속 연소 유동해석)

  • Jeong Eunju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.368-373
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the mixing enhancement combustion phenomena according to fuel injector location near the cavity in supersonic flow. Fuel injector location changes the actual length to depth ratio of the cavity in the supersonic combustor. Therefore fuel injector location near the cavity effects different fuel/air mixing efficiency and combustion efficiency.

  • PDF

Experimental Study on Supersonic Combustor using Inclined Fuel Injection with the Cavity, Part 2 : Pressure Measurement (공동 상류 경사 분사를 이용한 초음속 연소기의 실험적 연구, Part 2 : 압력 측정)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated at the trailing edge of the cavity and reflects off the top and bottom wall. For non-reacting flow, static pressures in low equivalence ratio are similar to those in no fuel injection. As equivalence ratio is increased, static pressures are increased in the duct. In the similar equivalence ratio, static pressures are increased when total enthalpy is decreased. For reacting flow, the flame is occurred near the cavity. The combustion is weak locally in the middle of the duct. The up and down pressure distribution in the duct means that the supersonic combustion is generated.

  • PDF

Experimental Study on Fuel-Air Mixing Using Flat Plate/Cavity in Supersonic Flow (초음속 유동장 내 평판/cavity를 이용한 연료-공기 혼합의 실험적 연구)

  • Kim, Jeong-Woo;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.319-322
    • /
    • 2006
  • Rapid mixing of air-fuel (<1 ms) is needed to accomplish supersonic combustion. In this experiment, helium was injected laterally in to the Mach 1.92 air flow. 2 kinds of model, flat plate/cavity, were used in this experiment and images were taken by schlieren visualization. Pressure was affected by shock structure in the supersonic duct, and penetration height was increased by increasing J. Penetration height was higher in the cavity model than flat plate model.

  • PDF

The Unsteady Cavity Flow Oscillation in Supersonic Moisture Air Stream (초음속 습공기 유동에서 비정상 공동유동의 진동)

  • Shin, Choon-Sik;Lee, Jong-Sung;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.341-344
    • /
    • 2008
  • Numerical simulations have been carried out for a supersonic two-dimensional flow over open, rectangular cavities (length-to-depth ratios are L/D = 1.0) in order to investigate the effect of non-equilibrium condensation of moist air on supersonic flows around the cavity for the flow Mach number 1.83 at the cavity entrance. In the present computational investigation, a condensing flow was produced by an expansion of moist air in a Laval nozzle. The results obtained showed that in the case with non-equilibrium condensation for L/D = 1.0, amplitudes of oscillation in the cavity became smaller than those without the non-equilibrium condensation. Furthermore, the occurrence of the non-equilibrium condensation reduced the peaks of power spectrum density and the frequency of the flow field oscillation increased in comparison with the case of $S_0$ = 0.

  • PDF