• 제목/요약/키워드: Supersonic Impinging Jet Flow

검색결과 37건 처리시간 0.026초

평판에 충돌하는 음속/초음속 제트유동에 관한 연구 (Study on Sonic/Supersonic Impinging Jets on a Flat Pate)

  • 김희동;이호준;서태원;금기헌
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.15-15
    • /
    • 1998
  • The problem of the impingement of a sonic or a supersonic jet on a flat surface has not only wide applications but has also interesting and very complex flow phenomena. The main applications of this impinging jet include prediction of solid surface erosion, design of launcher systems, stage separation of multi-stage rocket system, V/STOL operations, thermal spray system, and manufacturing technologies of materials. Much have been learned about the supersonic impinging jet flow field but many fundamental questions have not been answered satisfactorily. The problem encompasses many facets of fluid dynamics which, in combination, present the compressibility effect and the viscous-inviscid interaction, coupled with flow separation and reattachment. What is more, there are many flow parameters that have on the impinging jet flow field, for example, Mach number, Reynolds number, pressure ratio, distance between the nozzle exit and flat plate, jet shock structure, nozzle diameter and etc. Thus the existing data on the supersonic impinging jet flow present considerable disagreement in which quantitative comparison between one result and another is often impossible.

  • PDF

화염유도로 주위의 3차원 초음속 제트 유동 해석 (Three Dimensional Supersonic Jet Flow Analysis Impinging on Flame Deflector Surface)

  • 박승경;최봉근;윤경택;우유철;이대성;강선일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.494-498
    • /
    • 2001
  • When supersonic jet impinges on wall from the nozzle, complex flow pattern appears such as Mach disc, expansion fan, and jet boundary. The numerical computation of this supersonic jet is important on flame deflecctor design for launch space especially. In this paper, we analyzed supersonic jet structure impinging on deflector wall using three dimensional steady and unsteady compressible equation and showed temperature and pressure distribution on the wall surface. As a result, some dominant factors of jet flows are discussed for conceptual design of flame deflector.

  • PDF

적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정 (An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR)

  • 곽종호;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

평판에 충돌하는 초음속 이중 동축제트에 관한 실험적 연구 (An Experimental Study of the Supersonic, Dual, Coaxial Jets Impinging on a Flat Plate)

  • 김중배;이준희;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.739-742
    • /
    • 2002
  • The supersonic, dual, coaxial jet impinging upon a vertical flat plate has recently been applied to a variety of industrial manufacturing processes, since it has several advantages over a conventional supersonic impinging jet. In the present study, experimentation is carried out to investigate the effects of the impinging angle of the annular flow and the design Mach number on the flow field formed over the vertical flat plate. A convergent-divergent nozzle is used to obtain the inner jet flow, its design Mach number being changed between $1.0\;and\;2.0$. The outer annular nozzle has a constant area of the Mach number of 1.0, and its impinging angle of $0^{\circ}\;and\;20^{\circ}$. The primary jet pressure ratio is changed in the range from 6.0 to 10.0 and for the annular flow, the assistant jet pressure ratio is changed from 1.0 to 4.0. The distance between the dual, coaxial nozzle and flat plate is also changed. Detailed pressure measurements are conducted along the axis of the jet and on the flat plate as well. The impinging coaxial Jet flows are visualized using the Schlieren and Shadow optical methods. The results show that the flow field on the plate is not strongly dependent only on the primary and assistant pressure ratios but also the impinging angle of the annular nozzle.

  • PDF

평판에 충돌하는 초음속 제트에 유동특성 (Characteristics of Supersonic Jet Impingement on a Flat Plate)

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.32-40
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum mean pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

Characteristics of Supersonic Jet Impingement on a Flat Plate

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.134-143
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

NUMERICAL ANALYSIS OF INTERACTION BETWEEN SUPERSONIC JET AND PERPENDICULAR PLATE

  • Yasunobu T;Matsuoka T;Kashimura H;Setoguchi T
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.39-44
    • /
    • 2005
  • The numerical investigation of the interaction between the underexpanded supersonic jet and the perpendicular plate is carried out using the TVD numerical method. The wave structure in the flowfield and the pressure and temperature distributions on the plate surface are obtained by the numerical analysis. Especially, the influence of self-induced flow oscillation caused by the impinging jet and the characteristic of impinging jet are shown. From the result of the numerical analysis, it is concluded that the pressure and the temperature fluctuations on the plate surface strongly depends on the pressure ratio in the flowfield and the position of plate.

노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성 (Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance)

  • 김성인;박승오;이광섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF

진동하는 충돌 제트의 스케일링과 효율적인 수치 모사 (EFFICIENT SIMULATION AND SCALING OF OSCILLATORY IMPINGING JETS)

  • 김성인;박승오;홍승규;이광섭
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.32-38
    • /
    • 2005
  • Present study simulates oscillatory supersonic impinging jet flows using the axisymmetric Navier-Stokes code. To capture the salient features of flow oscillation and overcome the divergence during the initial transient period, several tests have been conducted for the grid and time step sizes. The results also show that the effects of the inlet flow condition at the nozzle exit and turbulence on the oscillatory behavior of supersonic impinging jets are negligible. Frequencies of the surface pressure oscillation obtained by the selected numerical method are in good accord with the measured impinging tones for various cases of nozzle-to-plate distance. Two seemingly different staging behaviors with nozzle-to-plate distance and nozzle pressure variations are found to correlate well if the frequency and distance are normalized by the length of the first shock cell.

초음속 노즐과 벽면 충돌제트의 유동특성 (Characteristics of Supersonic Nozzle and Jet Impingement)

  • Hong, Seung-Kyu;Lee, Kwang-Seop;Sung, Woong-Je
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.256-262
    • /
    • 2001
  • Viscous solutions of supersonic side jet nozzle and supersonic jet impinging on a flat plate are simulated using three-dimensional Navier-Stokes solver. For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful devise as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. The aerodynamic characteristics of the side jet devise itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. On the other hand, the jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. As the plate is placed close to the nozzle, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. The amplitude of wall pressure fluctuations subsides as the plate/nozzle distance increases, and the frequency of the wall pressure is estimated on the order of 10.0 KHz. Objectives of this paper are to show accurate simulation of nozzle flow itself and to demonstrate the jet flow structure when the jet interacts with a wall at a close range.

  • PDF