• Title/Summary/Keyword: Supersonic Flows

Search Result 183, Processing Time 0.026 seconds

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

Investigation into the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파 히스테리시스 현상의 연구)

  • Lee, Ik In;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.609-611
    • /
    • 2017
  • The hysteresis phenomena are frequently encountered in the wide variety of fluid flow systems of industrial and engineering applications. Hysteresis mainly appears during the transient change of pressure ratios, and this, in turn, influences the performance the supersonic wind tunnel. However, investigations on the hysteresis phenomenon particularly inside the supersonic wind tunnel are rarely studied. In the present study, numerical simulations are carried out to investigate hysteresis phenomenon of the shock waves inside the Supersonic Wind Tunnel. The unsteady, compressible flow through the supersonic wind tunnel is computationaly analyzed with an symmetric model. The Navier-Stokes equations are solved with Spalart-Allmaras turbulence model using a fully implicit finite volume scheme. The variaton in the flow field between the starting pressure ratio and operating pressure ratio of a supersonic wind tunnel is investigated in terms of hysteresis phenomenon.

  • PDF

Gas Temperature Measurement in Supersonic Flows by N2+ Emission Spectroscopy (질소 이온 발광 분광법을 이용한 초음속 유동의 기체 온도 측정)

  • Shin, Ji-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • The procedure for estimating the gas (rotational) temperature of an air discharge in supersonic flows is presented in detail. Since direct measurement of the temperature in a supersonic flow is difficult, a nonintrusive measurement was performed by optical emission spectroscopy based on the emission spectra of nitrogen molecular ions. A detailed explanation, including the equations for emission line intensity, is presented in order to understand the structure of the emission spectra of nitrogen molecular ions. Using the obtained representation for emission spectrum, a synthetic spectrum of the first negative system of $N_2^+$ is obtained, and it is compared with the experimentally measured spectrum. Within a relative error of approximately 6.8% for the overall band spectra, the synthetic and measured spectra agree well. In the case of a 25-mA DC air discharge in a supersonic (Mach 3) flow, the gas temperature profile shows an approximately linear variation and a peak temperature of approximately 350 K.

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

An Analytical Study on Supersonic Under-Expanded Jet (초음속 부족팽창 제트유동에 관한 해석적 연구)

  • 김희동;이호준;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Based upon the results of numerical calculation, empirical scaling equations were made for supersonic under-expanded jets in both axisymmetric and two dimensional flows. The objective of the present study is to find a straightforward method that can predict the under-expanded supersonic jets issuing from various kinds of nozzles. The present empirical equations were agreed with the calculation results of total variation diminishing difference scheme. The supersonic under-expanded jets operating at a given pressure ratio could be well predicted by the present scaling equations.

  • PDF

Numerical Analysis of Supersonic Combustion Flows according to Fuel Injection Positions near the Cavity (공동주위 분사위치에 따른 초음속 연소 유동해석)

  • Jeong Eunju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.368-373
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the mixing enhancement combustion phenomena according to fuel injector location near the cavity in supersonic flow. Fuel injector location changes the actual length to depth ratio of the cavity in the supersonic combustor. Therefore fuel injector location near the cavity effects different fuel/air mixing efficiency and combustion efficiency.

  • PDF

Finite Volume Analysis of a Supersonic Non-Equilibrium Flow Around an Axisymmetric Blunt Body

  • Haoui, R.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2010
  • The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium state for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body. This allows the capture of a shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the flux vector splitting method of Van Leer. Here, adequate time stepping parameters, along with Courant, Friedrich, Lewis coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of $10^{-8}$.

An Experimental Study of Sonic/Supersonic Ejector Flows (음속/초음속 이젝터 유동에 관한 실험적 연구)

  • Kim, Hui-Dong;Choe, Bo-Gyu;Gwon, O-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.640-647
    • /
    • 2002
  • An experimental investigation or the sonic and supersonic air ejector systems has beer conducted to develop design and prediction programs for practical ejector system. Five different primary nozzles have been employed to operate the ejector systems in the ranges of low and moderate operating pressure ratios. The ejector operating pressure ratio for the secondary chamber pressure to be minimized has a strong influence of the ejector throat ratio. The pressure inside the ejector diffuser is not dependent on the primary nozzle configurations employed but only a function of the ejector operating pressure ratio. Experimental results show that a supersonic ejector system is more desirable for obtaining high vacuum pressure of the secondary chamber than a sonic ejector system.

TRANSITIONAL FLOW ANALYSIS OVER DOUBLE COMPRESSION RAMP WITH NOSE BLUNTNESS IN SUPERSONIC FLOW (초음속 이중 압축 램프의 앞전 곡률에 따른 천이 유동 해석)

  • Shin, Ho Cheol;Sa, Jeong Hwan;Park, Soo Hyung;Byun, Yung Hwan
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.36-43
    • /
    • 2015
  • Accurate prediction of supersonic transition is required for the heat transfer estimation over supersonic double compression ramp flows. Correlation-based transition models were assessed for a supersonic double ramp problem. Numerical results were compared with experimental data from RWTH Aachen University. A parametric study on the nose bluntness was performed using a selected transition model. As the nose bluntness increases, the boundary layer thickness is increased and the triple point of shock interactions moves downstream. The peak magnitude of the heat transfer is consequently decreased with the nose bluntness.

Numerical Visualization of Supersonic Microjet Flows (초음속 마이크로제트 유동의 수치해석적 가시화)

  • Shin, Choon-Sik;Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 2010
  • Supersonic microjets acquire considerable research interest from a fundamental fluid dynamics perspective, in part because the combination of highly compressible flow at low-to-moderate Reynolds number is not very common, and in part due to the complex nature of the flow itself. In addition, microjets have a great variety engineering applications such as micro-propulsion, MEMS(Micro-Electro Mechanical Systems) components, microjet actuators and fine particle deposition and removal. Numerical simulations have been carried out at moderate nozzle pressure ratios and for different nozzle exit diameters to investigate and to understand in-depth of aerodynamic characteristics of supersonic microjets.