• Title/Summary/Keyword: Superparamagnetism

Search Result 45, Processing Time 0.027 seconds

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Magnetization and Magnetic Entropy Change in Superparamagnetic Co-Ferrite Nanoparticle (초상자성 코발트 페라이트 나노입자에 대한 자화 및 자기엔트로피 변화)

  • Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2008
  • In order to the magnetization and magnetic entropy change for superparamagnetic ferrite nanoparticles, ultrafine cobalt ferrite particles were synthesized using a mircoemulsion method. The peak of X-ray diffraction pattern corresponds to a cubic spinel structure with the lattice constant 8.40 $\AA$. The average particle size, determined from X-ray diffraction line-broadening using Scherrer's, is 7.9 nm. The maximal magnetizations measured at 5 and 300 K are 24.3 emu/g and 17.2 emu/g, respectively. Superparamagnetic behavior of the sample is confirmed by the coincidence of the M vs. H/T plots at various temperatures. According to the thermodynamic theory, magnetic entropy change decreases with increasing temperature.

The Oxidation of Magnetic Particles in Medicinal Ointment

  • Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.83-85
    • /
    • 2012
  • Magnetic particles in a novel, wound-healing ointment were studied using M$\ddot{o}$ssbauer spectroscopy and VSM to estimate the stability of the properties of the magnetic particles. The isomer shifts of $Fe_3O_4(A)$ were found to be 0.49-0.56 mm/s relative to iron metal, this indicates that the iron ions in $Fe_3O_4(A)$ are $Fe^{3+}$. On the other hand, the isomer shifts of $Fe_3O_4(B)$ were found to be 0.91-1.13 mm/s relative to iron metal, this shows that the ion state of $Fe_3O_4(B)$ is a mixed state of $Fe^{2+}$ and $Fe^{3+}$. It is noted that this composition, as well as that of the initial pure component in the form of a highly dispersed fraction (${\sim}10\;{\AA}$), differs from the stoichiometric one. It was found that the area ratio of the M$\ddot{o}$ssbauer subspectra of $Fe_3O_4(A)$ / $Fe_3O_4(B)$ taken at 87 and 181 K linearly increased in comparison to the initial pure magnetic particles, but the rate of increase of the area ratio at 181 K was about two times that at 87 K. From the magnetic hyperfine field, despite their small size, the particles exhibit no superparamagnetism.

Magnetic Properties of Transition Metal-implanted ZnO Nanotips Grown on Sapphire and Quartz

  • Raley, Jeremy A.;Yeo, Yung-Kee;Hengehold, Robert L.;Ryu, Mee-Yi;Lu, Yicheng;Wu, Pan
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2008
  • ZnO nanotips, grown on c-$Al_2O_3$ and quartz, were implanted variously with 200 keV Fe or Mn ions to a dose level of $5{\times}10^{16}cm^{-2}$. The magnetic properties of these samples were measured using a superconducting quantum interference device (SQUID) magnetometer. Fe-implanted ZnO nanotips grown on c-$Al_2O_3$ showed a coercive field width of 209 Oe and a remanent field of 12% of the saturation magnetization ($2.3{\times}10^{-5}emu$) at 300K for a sample annealed at $700^{\circ}C$ for 20 minutes. The field-cooled and the zero-field-cooled magnetization measurements also showed evidence of ferromagnetism in this sample with an estimated Curie temperature of around 350 K. The Mn-implanted ZnO nanotips grown on c-$Al_2O_3$ showed superparamagnetism resulting from the dominance of a spin-glass phase. The ZnO nanotips grown on quartz and implanted with Fe or Mn showed signs of ferromagnetism, but neither was consistent.

Crystal structures and Magnetic properties of Co-($Al_{1-X}Fe_X$) alloys (Co-($Al_{1-X}Fe_X$) 합금계의 결정구조 및 자기적 성질)

  • Koh, Kowan-Young;Yun, Seok-Gil
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.143-150
    • /
    • 1992
  • Crystal structures and magnetic properties of annealed Co-(Al-Fe) alloys have been investigated. Annealed specimens showed superparamagnetism when x=0.05 and ferromagnetism when $x{\geq}0.10$. Magnetization increased as x increased. X-ray diffraction data revealed that specimens were single-phase in B2(CsCl) structure with constant lattice parameter $2.87{\AA}$. The experimental results were analized on the point of view of the local environmental effect of magnetic atoms.

  • PDF

Preparation of Chitosan-coated Magnetite Nanoparticles by Sonochemical Method for MRI Contrast Agent

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.124-128
    • /
    • 2009
  • Magnetic nanoparticles were synthesized by using the sonochemical method with oleic acid as a surfactant. The average size of the magnetite nanoparticles was controlled by varying the ratio R=[$H_2O$]/[surfactant] in the range of 2 to 9 nm. To prepare chitosan-coated magnetite nanoparticles, chitosan solution was added to a magnetite colloid suspension under ultrasonication at room temperature for 20 min. The chitosan-coated magnetite nanoparticles were characterized by several techniques. Atomic force microscopy (AFM) was used to image the chitosan-coated nanoparticles. Magnetic hysteresis measurement was performed by using a superconducting quantum interference device (SQUID) magnetometer to investigate the magnetic properties of the magnetite nanoparticles and the chitosan-coated magnetite nanoparticles. The SQUID measurements revealed the superparamagnetism of both nanoparticles. The T1- and T2-weighted MR images of these chitosan-coated magnetite colloidal suspensions were obtained with a 4.7 T magnetic resonance imaging (MRI) system. The chitosancoated magnetite colloidal suspensions exhibited enhanced MRI contrasts in vitro.

Nanoparticle Ferrite Multilayers Prepared by New Self-Assembling Sequential Adsorption Method

  • Kim, Yeong-Il;Kang, Ho-Jun;Kim, Don;Lee, Choong-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.593-599
    • /
    • 2003
  • The nanoparticle magnetite of which diameter was about 3 nm was synthesized in a homogeneous aqueous solution without a template. The synthesized magnetite nanoparticle was easily oxidized to maghemite in an ambient condition. The magnetic properties of the ferrite nanoparticle show superparamagnetism at room temperature and its blocking temperature is around 93 K. Modifying the sequential adsorption method of metal bisphosphonate, we have prepared a multilayer thin film of the ferrite nanoparticle on planar substrates such as glass, quartz and Si wafer. In this multilayer the ferrite nanoparticle layer and an alkylbisphosphonate layer are alternately placed on the substrates by simple immersion in the solutions of the ferrite nanoparticle and 1, 10-decanediylbis (phosphonic acid) (DBPA), alternately. This is the first example, as far as we know, of nanoparticle/alkyl-bisphosphonate multilayer which is an analogy of metal bisphosphonate multilayer. UV-visible absorption and infrared reflection-absorption studies show that the growth of each layer is very systematic and the film is considerably optically transparent to visible light of 400-700 nm. Atomic force microscopic images of the film show that the surface morphology of the film follows that of the substrate in μm-scale image and the nanoparticle-terminated surface is differentiated from the DBPA-terminated one in nm-scale image. The magnetic properties of this ferrite/DBPA thin film are almost the same as those of the ferrite nanoparticle powder only.

Superparamagnetic Properties of Ni0.7Zn0.3Fe2O4 Nanoparticles

  • Lee, Seung-Wha;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.84-88
    • /
    • 2005
  • Nanoparticles $Ni_{0.7}Zn_{0.3}Fe_2O_4$ is fabricated by a sol-gel method. The magnetic and structural properties of powders were investigated with XRD, SEM, $M\ddot{o}ssbauer$ spectroscopy, and VSM. $Ni_{0.7}Zn_{0.3}Fe_2O_4$ powders annealed at $300^{\circ}C$ have a spinel structure and behaved superparamagnetically. The estimated size of $Ni_{0.7}Zn_{0.3}Fe_2O_4$ nanoparticle is about 11 nm. $Ni_{0.7}Zn_{0.3}Fe_2O_4$ annealed at 400 and $500^{\circ}C$ has a typical spinel structure and is ferrimagnetic in nature. The isomer shifts indicate that the iron ions were ferric at the tetrahedral (A) and the octahedral (B). Blocking temperature $(T_B)\;of\;Ni_{0.7}Zn_{0.3}Fe_2O_4$ nanoparticle is about 260 K. The magnetic anisotropy constant of $Ni_{0.7}Zn_{0.3}Fe_2O_4$ annealed $300^{\circ}C$ were calculated to be $1.7X10^6\;ergs/cm^3$. Also, temperature of the sample increased up to $43^{\circ}C$ within 7 minutes under AC magnetic field of 7 MHz.

A Study of the Properties of Magnetic Particles in Medicinal Ointments (의학용 연고제에 포함된 자성물질 입자들의 성질에 대한 연구)

  • Do, Tae-Sung;Nam, Hyo-Duk;Park, Se-Gon;Hwang, Hyeun-Gook;Hwang, Yong-Soon;Kim, Eng-Chan;Park, Eun-Jung;V. I. Nikolaev;A. V. Bykov
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.69-79
    • /
    • 1997
  • Stability of the properties of magnetite particles in novel medicinal magnetic ointments of multipurpose application has been studied by M ssbauer spectroscopy. It has been found that the comparative analysis of the results obtained by model fitting of $^{57}$ Fe nuclei spectra with those known for the system Fe$_3$O$_4$-${\gamma}$-Fe$_2$O$_3$ allows to identify the phase composition of the particles. It is noted that this composition, as well as that of the initial pure component in the form of a highly dispersed fraction (~100$\AA$), differs noticeably from the stoichiometric one. From the magnetic hyperfine field despite small particle sizes, the particles exhibit no superparamagnetism (in the temperature range from 95 to 300K). Radiative sterilization of the ointments has no effect on the magnetic component composition.

  • PDF

Studies on the Synthesis and Magnetic Properties of Cobalt Nanoparticles in the Polymer Film (코발트 나노 입자가 도입된 초상자성 고분자 박막의 제조 및 자성 연구)

  • Kim, Y.;Yoon, M.;Kim, Y.M.;Volkov, V.;Park, I.W.;Song, H.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • Superparamagnetic properties of self-aggregated cobalt nanoparticles in the perfluorinated ion-exchange polymeric membrane (MF-4SK) prepared by ion-exchange and recovery methods were investigated by transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometer at various temperatures. Our experimental results show that cobalt nanoparticles in MF-4SK for the concentration of $7.8{\times}10^{19}$ atoms per 1 g of polymer membrane exhibit superparamagnetic properties above the average blocking temperature ($T_{B}$), which is determined to be around 185 K at applied field of 500 Oe. The average particle radius of 4.0 nm achieved from Langevin function fit is in good agreement with TEM observations. This experimental evidence suggests that cobalt nanoparticles in polymer film obey a single domain theory. The results are discussed in the light of current theory for the superparamagnetic behavior of magnetic nanoparticles.