• Title/Summary/Keyword: Superoxide Dismutase Gene Expression

Search Result 136, Processing Time 0.028 seconds

Copper, Zinc-Superoxide Dismutase (Cu/Zn SOD) Gene During Embryogenesis of Bombyx mori: Molecular Cloning, Characterization and Expression

  • Hong, Sun-Mee;Kang, Seok-Woo;Goo, Tae-Won;Kim, Nam-Soon;Lee, Jin-Sung;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • BmCu/Zn SOD was isolated from early embryo of Bombyx mori using microarray analysis. The BmCu/Zn SOD gene was observed during the early embryonic stage with the strongest signal found at the unfertilizaion, fertilization and blastoderm stages. The BmCu/Zn SOD gene encodes a protein of 154 amino acids with a calculated Mr of 15 kDa. The deduced amino acid sequence of BmCu/Zn SOD indicated that the residues that form on the Cu/Zn binding site are conserved and that the sequence is a 60% identity to that of M. domestica. In a phylogenetic tree, Bm SOD was also close to Drosophila SODs rather than other insect SODs. The BmCu/Zn SOD gene exists as a single copy in the genome. Transcripts of BmCu/Zn SOD cDNA were identified by northern blot analysis. The expression of the BmCu/Zn SOD gene was observed weakly in most of larvae, pre-pupae, pupae and adult tissues. Also, the BmCu/Zn SOD gene was observed in early embryonic stage. Although the roles of SODs remains to be further elucidated, the high expression of BmCu/Zn SOD gene at before 24 h post fertilization suggests that this gene is of general importance during early embryogenesis in the Bombyx mod.

Expression of Cu/Zn Superoxide Dismutase (Cu/Zn-SOD) mRNA in Shark, Schyliorhinus torazame, Liver during Acute Cadmium Exposure

  • Cho, Young-Sun;Ha, En-Mi;Bang, In-Chul;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.18 no.3
    • /
    • pp.173-179
    • /
    • 2005
  • Superoxide dismutase (SOD), an antioxidant enzyme catalyzing the first step for scavenging the reactive oxygen species is important as an early warning indicator to address various biological stresses. For this reason, the monitoring the expressed pattern of SOD gene in fish organs is one of important biomarkers to assess the aquatic pollution caused by many toxic chemicals. Based on the Northern blot hybridization, semi-quantitative and/or realtime RT-PCRs, the alteration of SOD gene transcripts in shark liver was examined during the experimental acute exposures to cadmium. The expression of SOD at mRNA level was up-regulated both by injection (0, 0.5, 1 or 2 mg $CdCl_2/kg$ body weight for 48 hours) and by immersion (0 or $5{\mu}M$ Cd for 0, 1, 4 and 7 days) treatments of cadmium. The transcriptional stimulation of shark SOD gene by cadmium exposure was dependent upon doses and durations: there was a trend toward more increase in higher dose and longer durations of exposure. The hepatic SOD mRNA levels showed also a general agreement with the tissue cadmium concentrations accumulated in immersion exposure. This result may provide useful strategy to develop a fine molecular biomarker at mRNA level for detecting aquatic pollution caused by toxic metals.

Effect of Sopyung-tang Extract on Insulin Secretion and Gene Expression in RIN-m5F Cells (소평탕(消平湯)이 RIN-m5F 세포에서 인슐린 분비 및 유전자 발현에 미치는 영향)

  • Youn, Sung-Sik;Cho, Chung-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.25-39
    • /
    • 2010
  • Background : At high glucose levels in $\beta$-cells, cell viability and insulin secretion are decreased by glucotoxicity. Sopyung-tang(SPT) had an effect on blood glucose level decrease and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Objectives : This study performed a series of experiment to verify the effects of SPT extract on the cell viability, antioxidant enzyme activities, insulin secretion and insulin mRNA expression at hyperglycemic states of RIN-m5F. Methods : After treatment at various concentrations of SPT added to the RIN-m5F cells, cell viability by MTT assay, free radical-scavenging activity, SOD activity and insulin secretion were measured. Additionally, insulin-related gene expression was measured using real-time RT-PCR. Results : Compared to the control group, SPT extract showed considerable effects on RIN-m5F cell viability, DPPH radical-scavenging activity, superoxide dismutase (SOD) activity, insulin secretion and insulin-related gene expression. Conclusions : This study showed that SPT extract has an effect on $\beta$-cell cell viability, insulin secretion and insulin-related gene expression. Thus, SPT extract may be used for treatment of diabetes and its complications. Further mechanism studies of SPT seem to be necessary on the glucotoxicity and oxidative stress.

Cadmium Toxicity Monitoring Using Stress Related Gene Expressions in Caenorhabditis elegans

  • Roh, Ji-Yeon;Park, Sun-Young;Choi, Jin-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • The toxicity of cadmium on Caenorhabditis elegans was investigated to identify sensitive biomarkers for environmental monitoring and risk assessment. Stress-related gene expression were estimated as toxic endpoints Cadmium exposure led to an increase in the expression of most of the genes tested. The degree of increase was more significant in heat shock protein-16.1, metallothionein-2, cytochrome p450 family protein 35A2, glutathione S-transferase-4, superoxide dismutase-1, catalase-2, C. elegans p53-like protein-1, and apoptosis enhancer-1 than in other genes. The overall results indicate that the stress-related gene expressions of C. elegans have considerable potential as sensitive biomarkers for cadmium toxicity monitoring and risk assessment.

OxyR Regulon Controls Lipid Peroxidation-mediated Oxidative Stress in Escherichia coli

  • Yoon, Seon-Joo;Park, Ji-Eun;Yang, Joon-Hyuck;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.297-301
    • /
    • 2002
  • Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. The oxyR gene product regulates the expression of enzymes and proteins that are needed for cellular protection against oxidative stress. Upon exposure to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the Escherichia coli oxyR overexpression mutant was much more resistant to lipid peroxidation-mediated cellular damage, when compared to the oxyR deletion mutant in regard to growth kinetics, viability, and DNA damage. The deletion of the oxyR gene in E. coli also resulted in increased susceptibility of superoxide dismutase to lipid peroxidation-mediated inactivation. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in free radical-induced cellular damage. Also, the oxyR regulon plays an important protective role in lipid peroxidation-mediated cellular damage.

Different Association of Manganese Superoxide Dismutase Gene Polymorphisms with Risk of Prostate, Esophageal, and Lung Cancers: Evidence from a Meta-analysis of 20,025 Subjects

  • Sun, Guo-Gui;Wang, Ya-Di;Lu, Yi-Fang;Hu, Wan-Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1937-1943
    • /
    • 2013
  • Altered expression or function of manganese superoxide dismutase (MnSOD) has been shown to be associated with cancer risk but assessment of gene polymorphisms has resulted in inconclusive data. Here a search of published data was made and 22 studies were recruited, covering 20,025 case and control subjects, for meta-analyses of the association of MnSOD polymorphisms with the risk of prostate, esophageal, and lung cancers. The data on 12 studies of prostate cancer (including 4,182 cases and 6,885 controls) showed a statistically significant association with the risk of development in co-dominant models and dominant models, but not in the recessive model. Subgroup analysis showed there was no statistically significant association of MnSOD polymorphisms with aggressive or nonaggressive prostate cancer in different genetic models. In addition, the data on four studies of esophageal cancer containing 620 cases and 909 controls showed a statistically significant association between MnSOD polymorphisms and risk in all comparison models. In contrast, the data on six studies of lung cancer with 3,375 cases and 4,050 controls showed that MnSOD polymorphisms were significantly associated with the decreased risk of lung cancer in the homozygote and dominant models, but not the heterozygote model. A subgroup analysis of the combination of MnSOD polymorphisms with tobacco smokers did not show any significant association with lung cancer risk, histological type, or clinical stage of lung cancer. The data from the current study indicated that the Ala allele MnSOD polymorphism is associated with increased risk of prostate and esophageal cancers, but with decreased risk of lung cancer. The underlying molecular mechanisms warrant further investigation.

Transgenic Tomato Plants That Overexpress Superoxide Dismutase in Fruits (토마토 과실에서 Superoxide Dismutase를 고발현하는 형질전환 식물체)

  • Park, Eun-Jeong;Lee, Haeng-Soon;Kwon, Suk-Yoon;Choi, Kwan-Sam;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Superoxide dismutase (SOD) plays an important role in cellular defense against oxidative stress in plants. We have developed transgenic tomato plants overexpressing a cassava SOD in fruits. Three transgenic tomato plants (one from cv. Pink forcer and two from cv. Koko) using a new vector system, ASOp :: . mSOD1/pBI101, harboring ascorbate oxidase promoter (ASOp) expressing dominantly in cucumber fruits, CuZnSOD cDNA (mSOD1) isolated from cultured cells of cassava, and nptll gene as a selectable marker were successfully developed. SOD specific activity (units/mg protein) in transgenic fruits of both cultivars was increased with maturation of the fruits. SOD specific activity of well-mature fruits in transgenic Pink forcer and Koko showed approximately 1.6 and 2.2 times higher than control fruits, respectively. The strength of SOD isoenzyme bands well reflected the SOD activity during the fruit maturation. These results suggested that SOD gene was properly introduced into tomato fruits in a fruit-dominant expression manner by ASO promoter.

Effects of geagibokrounghwan on superoxide dismutase gene expression in experimental mouse fed cholesterol (계지복령환이 Cholesterol 식이 생쥐의 SOD 유전자발현능에 미치는 영향)

  • Hong Yun-Pyo;Ro Sung-Hyun
    • Herbal Formula Science
    • /
    • v.6 no.1
    • /
    • pp.215-226
    • /
    • 1998
  • Geagibokrounghwan (桂技茯笭湯) has long been used to cure human diseases such as vascular and blood disorders. However, it is still unkown on its action mechanism, physiolosical and biochemical meaning. Thus, many attempts were tried to show the scientific background covering the above mentioned mechanism. The effect of Geagibokrounghwan, which was known to date, as follow; effective circulation of body blood system, proliferation of leucocytes and antioxidative action. In this study, we have applied the Geagibokrounghwan administration and feed to mouse, to see effects on the expression of superoxide dismutase(SOD) mRNA as antioxidative agent and oxygen radical scavenger. Total RNAs includingmRNA have been isolated from liver and white blood cells after mice were fed with cholesterol in high dose. Also, in a separate group, the cholesterol-administrated mice were fed with Geagibokrounghwan to see the effects on SOD transcription. and then reverse transcriptase-polymerase chain reaction (RT-PCR) usion each primer set (SOD-F;GATGAAAGCGGTGT-3'; SOD-R; 5'-CCTGTGGAGTGATT-3') were performed to trace theamounts of mRNA. SOD mRNA was specifically expressed in Geagibokrounghwan-fed mice at 2 weeks after treatment, however, gradually reduced after 4 weeks. These results indicate that Geagibokrounghwan is highly applicable in treatment of the above mentioned human diseases.

  • PDF

Gene Expression Profiling of Eukaryotic Microalga, Haematococcus pluvialis

  • EOM HYUNSUK;PARK SEUNGHYE;LEE CHOUL-GYUN;JIN EONSEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1060-1066
    • /
    • 2005
  • Under environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids, i.e. astaxanthin, in the cytosol. The induction and regulation of astaxanthin biosynthesis in microalgae has recently received considerable attention owing to the increasing use of secondary carotenoids as a source of pigmentation for fish aquacultures, and as a potential drug in cancer prevention as a free-radical quencher. Accordingly, this study generated expressed sequence tags (ESTs) from a library constructed from astaxanthin-induced Haematococcus pluvialis. Partial sequences were obtained from the 5' ends of 1,858 individual cDNAs, and then grouped into 1,025 non-overlapping sequences, among which 708 sequences were singletons, while the remainder fell into 317 clusters. Approximately $63\%$ of the EST sequences showed similarity to previously described sequences in public databases. H. pluvialis was found to consist of a relatively high percentage of genes involved in genetic information processing ($15\%$) and metabolism ($11\%$), whereas a relatively low percentage of sequences was involved in the signal transduction ($3\%$), structure ($2\%$), and environmental information process ($3\%$). In addition, a relatively large fraction of H. pluvialis sequences was classified as genes involved in photosynthesis ($9\%$) and cellular process ($9\%$). Based on this EST analysis, the full-length cDNA sequence for superoxide dismutase (SOD) of H. pluvialis was cloned, and the expression of this gene was investigated. The abundance of SOD changed substantially in response to different culture conditions, indicating the possible regulation of this gene in H. pluvialis.

Superoxide Dismutase Gene Expression Induced by Lipopolysaccharide in Alveolar Macrophage of Rat (폐포대식세포에서 내독소 자극에 의한 Superoxide Dismutase 유전자발현의 조절 기전)

  • Park, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Hyun, In-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.522-534
    • /
    • 1995
  • Background: In the pathogenesis of acute lung injury induced by lipopolysaccharide(LPS), oxygen radiclls are known to be involved in one part. Superoxide dismutase(SOD) protects oxygen radical-induced tissue damage by dismutating superoxide to hydrogen peroxide. In eukaryotic cells, two forms of SOD exist intracellularly as a cytosolic, dimeric copper/zinc-containing SOD(CuZnSOD) and a mitochondrial, tetrameric manganese-containing SOD(MnSOD). But there has been little information about SOD gene expression and its regulation in pulmonary alveolar macrophages(PAMs). The objective of this study is to evaluate the SOD gene expression induced by LPS and its regulation in PAMs of rat. Method: In Sprague-Dawley rats, PAMs obtained by broncholaveolar lavage were purified by adherence to plastic plate. To study the effect of LPS on the SOD gene expression of PAMs, they were stimulated with different doses of LPS($0.01{\mu}g/ml{\sim}10{\mu}g/ml$) and for different intervals(0, 2, 4, 8, 24hrs). Also for evaluating the level of SOD gene regulation actinomycin D(AD) or cycloheximide(CHX) were added respectively. To assess whether LPS altered SOD mRNA stability, the rate of mRNA decay was determined in control group and LPS-treated group. Total cellular RNA extraction by guanidinium thiocyanate/phenolfchlorofonn method and Northern blot analysis by using a $^{32}P$-labelled rat MnSOD and CuZnSOD cDNAs were performed. Results: The expression of mRNA in MnSOD increased dose-dependently, but not in CuZnSOD. MnSOD mRNA expression peaked at 8 hours after LPS treatment. Upregulation of MnSOD mRNA expression induced by LPS was suppressed by adding AD or CHX respectively. MnSOD mRNA stability was not altered by LPS. Conclusion: These findings show that PAMs of rat could be an important source of SOD in response to LPS, and suggest that their MnSOD mRNA expression may be regulated transcriptionally and require de novo protein synthesis without affecting mRNA stability.

  • PDF