• Title/Summary/Keyword: Superheated Temperature

Search Result 65, Processing Time 0.033 seconds

The Influence of Variable Thermophysical Properties for Filmwise Condensation of Superheated Vapor on a Vertical Wall (수직 벽에서 과열증기의 막응축에 대한 열물성의 영향)

  • 김경훈;성현찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A theoretical model for laminar filmwise condensation along an isothermal vertical wall at constant pressure has been formulated on the basis of conservation laws and other fundamental physical principles. The model was applied to the prediction of the influences of variable thermophysical properties of liquid and vapor layers in the filmwise condensation of superheated vapor of Rl2, R134a, R142b and R152a. The dimensionless velocity component method was employed in the transformation of the governing equations and their boundary conditions, and the polynomial method was used for treating variable thermophysical properties of liquid and vapor. Physical quantities, such as the dimensionless thickness of the liquid layer, local heat transfer rate and mean heat transfer coefficient, were investigated for different values of the superheated temperature of the stagnant vapor far from the wall. It was found that the value of mean heat transfer coefficient of R134a was higher than other refrigerants for the change of the superheated temperature.

  • PDF

Comparative Analysis of Models for Free Convective Film Condensation on an Isothermal Vertical Wall (등온 수직벽의 자연대류 막응축 모델에 관한 비교분석)

  • Sung, Hyun-Chan;Kim, Kyoung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1380-1387
    • /
    • 2000
  • The existing theoretical models for steady two-dimensional free convective laminar film condensation of pure saturated or superheated vapor under atmospheric pressure on isothermal vertical wall have been reviewed. To investigate the effects such as inertia, thermal convective and liquid-vapor interface shear stress, the models of constant or variable properties in liquid film for condensation of saturated vapor are compared in detail with Nusselt model. Also, for condensation of superheated vapor, the effects of superheated temperature and variable properties in liquid and vapor layers are examined and then a new correlation is proposed to predict the heat transfer. The results are in good agreement with the Shang's correlation within 2% errors.

Comparative Analysis of Models for Free Convective Film Condensation on an Isothermal Vertical Wall (등온 수직벽의 자연대류 막응축 모델에 관한 비교분석)

  • Sung, Hyun-Chan;Kim, Kyoung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.31-36
    • /
    • 2000
  • The existing theoretical models for steady two-dimensional free convective laminar film condensation or pure saturated or superheated vapor under atmospheric pressure on isotheraml vertical wall have been reviewed. To investigate the effects of inertia, thermal convective and liquid-vapor interface shear stress, the models of constant or variable properties in liquid film for condensation of saturated vapor are compared in detail with Nusselt model. Also, for condensation of superheated vapor the effects of superheated temperature and variable properties in liquid and vapor layer are examined and then new correlation is proposed to predict the heat transfer. The results are in good agreement with the Shang's correlation within 2% errors.

  • PDF

Eco-Friendly Drying Technology using Superheated Steam (과열 증기 이용 친환경 건조기술)

  • Kim, Og Sin;Lee, Dong Hyun;Chun, Won Pyo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.258-273
    • /
    • 2008
  • For being recent high oil price age, the interest in superheated steam drying technology is increasing as the method to enhance the energy efficiency of drying process consuming a lot of energy. This technology uses the superheated steam as drying medium to dry the materials and has advantages that can save the energy by recycling the evaporated high-temperature steam, enhance the quality of dried products, and minimize the exhaust of environmental pollution materials. In this work, it has been introduced from general drying principle to the principle and related studies of drying technology using superheated steam, using examples of superheated steam with dryer types, and industrial applications.

A Comparison between the Thermomechanical and Structural Changes in Textured PET Yarns after Superheated Steam and Dry Heat Treatment

  • Karakas, Hale-Canbaz
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • PET yarns textured at different texturing conditions were treated with superheated steam or dry heat at different temperatures for different times. The effects of the treatment conditions on the thermomechanical and structural changes of the yarn were examined by shrinkage, X-ray diffraction and birefringence measurements. With increase in superheated steam temperature, the crystalline orientation factor and birefringence decreased, whereas crystal size increased. Dry heat treatment had a smaller effect on shrinkage and structural properties in comparison with superheated steam treatment. The additional shrinkage after texturing process was investigated. The effect of heat-setting in both media was more significant at $200^{\circ}C$. The time dependence of the properties was not linear.

Neural Network Modeling for the Superheated, Saturated and Compressed Region of Steam Table (증기표의 과열, 포화 및 압축영역의 신경회로망 모델링)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.872-878
    • /
    • 2018
  • Steam tables including superheated, saturated and compressed region were simultaneously modeled using the neural networks. Pressure and temperature were used as two inputs for superheated and compressed region. On the other hand Pressure and dryness fraction were two inputs for saturated region. The outputs were specific volume, specific enthalpy and specific entropy. The neural network model were compared with the linear interpolation model in terms of the percentage relative errors. The criterion of judgement was selected with the percentage relative error of 1%. In conclusion the neural networks showed better results than the interpolation method for all data of superheated and compressed region and specific volume of saturated region, but similar for specific enthalpy and entropy of saturated region.

Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak

  • Choi, Yun-Sang;Hwang, Ko-Eun;Jeong, Tae-Jun;Kim, Young-Boong;Jeon, Ki-Hong;Kim, Eun-Mi;Sung, Jung-Min;Kim, Hyun-Wook;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The effects of five different cooking methods (boiling, steaming, grilling, microwaving, and superheated steaming) on proximate composition, pH, color, cooking loss, textural properties, and sensory characteristics of chicken steak were studied. Moisture content and lightness value (L*-value) were higher in superheated steam cooked chicken steak than that of the other cooking treatments such as boiling, steaming, grilling and microwaving cooking (p<0.05), whereas protein content, redness value (a*-value), hardness, gumminess, and chewiness of superheated steam cooked chicken steak was lower than that in the other cooking treatments (p<0.05). Fat content and ash content, springiness, and cohesiveness were not significantly different among the chicken steak cooked using various methods (p>0.05). Among the sensory characteristics, tenderness score, juiciness score and overall acceptability score were the highest for the superheated steam samples (p<0.05), whereas no difference in flavor scores were observed among the other treatments (p>0.05). These results show that marinated chicken steak treated with superheated steam in a preheated 250℃ oven and 380℃ steam for 5 min until core temperature reached 75℃ improved the quality characteristics and sensory properties the best. Therefore, superheated steam was useful to improve cooked chicken steak.

Prediction on Performance of Cascade Refrigeration System using Alternative Freon Refrigerants (대체 프레온계 냉매를 이용하는 이원 냉동시스템의 성능예측)

  • Roh, Geonsang
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • In this paper, cycle performance analysis of cascade refrigeration system using alternative FREON refrigerants are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooled and superheated degree, and evaporating and condensing temperature, temperature difference of cascade heat exchanger in cascade refrigeration system. The COP of cascade refrigeration system increases with the increasing subcooled degree, but there is no significant changes with the increasing superheated degree. The COP of cascade refrigeration system depends on evaporating and condensing temperatures of cascade heat exchanger. Therefore, subcooled degree, evaporating and condensing temperature of cascade heat exchanger using alternative FREON refrigerants have an effect on the COP of this system. In this paper, COP of cascade refrigeration system using R23 for low temperature system and R507A for high temperature system is higher 8 ~ 29 % than using R13 for low temperature system and R22 for high temperature system.

Experimental Study on Single Bubble Growth Under Subcooled, Saturated, and Superheated Nucleate Pool Boiling

  • Kim Jeong-Bae;Lee Jang-Ho;Kim Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.692-709
    • /
    • 2006
  • Nucleate pool boiling experiments with constant wall temperature were performed using pure R1l3 for subcooled, saturated, and superheated pool conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant wall temperature and to measure the instantaneous heat flow rate accurately with high temporal and spatial resolutions. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble geometry was obtained from the captured bubble images. The effect of the pool conditions on the bubble growth behavior was analyzed using dimensionless parameters for the initial and thermal growth regions. The effect of the pool conditions on the heat flow rate behavior was also examined. This study will provide good experimental data with precise constant wall temperature boundary condition for such works.

Heat Transfer Correlation to Predict the Evaporation of a Water Droplet in Superheated Steam during Reflood Phase of a LOCA

  • Kim, Yoo;Ban, Chang-Hwan
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-268
    • /
    • 2000
  • A heat transfer correlation to predict the vaporization of a water droplet in highly superheated steam during a loss-of-coolant accident(LOCA) of a nuclear power plant is provided. Vaporization of liquid fuel or water droplets in superheated air or steam and subsequent interface heat transfer between a liquid droplet and superheated gas is typically correlated by way of a Nusselt number as a function of Reynolds number, Prantl number, and in some cases including mass transfer number. Presently available correlations and experimental data of the evaporation of liquid droplets in air or steam are analyzed and a new Nusselt number correlation is proposed taking Schmidt number into consideration in order to account for binary diffusion of the vapor as well, Nu$\_$f/(1+B)$\^$0.7/=2+0.53Sc$\_$f/$\^$-1/5/Re$\_$M/$\^$$\sfrac{1}{2}$/Pr$\_$f/$\^$$\sfrac{1}{3}$/ for which properties are evaluated at film condition except the density of Reynolds number evaluated at ambient condition. Diverse correlations for various combinations of liquid and gas species are put into single equation. The blowing correction factor of (1+B)$\^$0.7/ is confirmed appropriate, and a criterion to distinguish so-called high- and low-temperature condition of ambient gas is set forth.

  • PDF