• Title/Summary/Keyword: Supercritical CO2

Search Result 125, Processing Time 0.024 seconds

The pH Reduction of the Recycled Aggregate Originated from the Waste Concrete by the scCO2 Treatment (초임계 이산화탄소를 이용한 폐콘크리트 순환골재의 중성화)

  • Chung, Chul-woo;Lee, Minhee;Kim, Seon-ok;Kim, Jihyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Batch experiments were performed to develop the method for the pH reduction of recycled aggregate by using $scCO_2$ (supercritical $CO_2$), maintaining the pH of extraction water below 9.8. Three different aggregate types from a domestic company were used for the $scCO_2$-water-recycled aggregate reaction to investigate the low pH maintenance of aggregate during the reaction. Thirty five gram of recycled aggregate sample was mixed with 70 mL of distilled water in a Teflon beaker, which was fixed in a high pressurized stainless steel cell (150 mL of capacity). The inside of the cell was pressurized to 100 bar and each cell was located in an oven at $50^{\circ}C$ for 50 days and the pH and ion concentrations of water in the cell were measured at a different reaction time interval. The XRD and SEM-EDS analyses for the aggregate before and after the reaction were performed to identify the mineralogical change during the reaction. The extraction experiment for the aggregate was also conducted to investigate the pH change of extracted water by the $scCO_2$ treatment. The pH of the recycled aggregate without the $scCO_2$ treatment maintained over 12, but its pH dramatically decreased to below 7 after 1 hour reaction and maintained below 8 for 50 day reaction. Concentration of $Ca^{2+}$, $Si^{4+}$, $Mg^{2+}$ and $Na^+$ increased in water due to the $scCO_2$-water-recycled aggregate reaction and lots of secondary precipitates such as calcite, amorphous silicate, and hydroxide minerals were found by XRD and SEM-EDS analyses. The pH of extracted water from the recycled aggregates without the $scCO_2$ treatment maintained over 12, but the pH of extracted water with the $scCO_2$ treatment kept below 9 of pH for both of 50 day and 1 day treatment, suggesting that the recycled aggregate with the $scCO_2$ treatment can be reused in real construction sites.

Synthesis of Copolymers Composed of 1H,1H,2H,2H-perfluorodecylmethacrylate and tert-butylmethacrylate and Their Lithographic Properties in Carbon Dioxide (1H,1H,2H,2H-퍼플로로데실메타크릴레이트와 tert-부틸메타크릴레이트로 구성된 공중합체의 합성 및 이산화탄소에서의 리소그라피 특성에 관한 연구)

  • Hwang, Ha Soo;Lee, Jin-kyun;Park, In;Huh, Hoon;Lim, Kwon Taek
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.402-406
    • /
    • 2008
  • A series of random copolymers, composed of 1H,1H,2H,2H-perfluoro decyl methacrylate (FDMA) as a $CO_2$-philic monomer and tert-butyl methacrylate (TBMA) as an acid labile monomer, were synthesized by free radical polymerization. The solubility of copolymers in carbon dioxide, light sensitivity at 365 nm exposure, and photoresist pattern formation properties were investigated. Furthermore, sub micron-sized poly(styrenesulfonate) : poly(3,4-ethylenedioxythiophene) (PSS : PEDOT) conducting polymer patterns were successfully prepared by pattern transfer.

Experimental Study on the Geochemical and Mineralogical Alterations in a Supercritical CO2-Groundwater-Zeolite Sample Reaction System (초임계 이산화탄소-지하수-제올라이트 시료 반응계에서의 지화학적 및 광물학적 변화에 관한 실험적 연구)

  • Park, Eundoo;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.421-430
    • /
    • 2014
  • In this study, a series of autoclave experiments were conducted in order to investigate the geochemical and mineralogical effects of carbon dioxide on deep subsurface environments. High pressure and temperature conditions of $50^{\circ}C$ and 100 bar, which are representative environments for geological $CO_2$ sequestration, were created in stainless-steel autoclaves for simulating the interactions in the $scCO_2$-groundwater-mineral reaction system. Zeolite, a widespread mineral in Pohang Basin where many researches have been focused as a candidate for geological $CO_2$ sequestration, and groundwater sampled from an 800 m depth aquifer were applied in the experiments. Geochemical and mineralogical alterations after 30 days of $scCO_2$-groundwater-zeolite sample reactions were quantitatively examined by XRD, XRF, and ICP-OES investigations. The results suggested that dissolution of zeolite sample was enhanced under the acidic condition induced by dissolution of $scCO_2$. As the cation concentrations released from zeolite sample increase, $H^+$ in groundwater was consumed and pH increases up to 10.35 after 10 days of reaction. While cation concentrations showed increasing trends in groundwater due to dissolution of the zeolite sample, Si concentrations decreased due to precipitation of amorphous silicate, and Ca concentrations decreased due to cation exchange and re-precipitation of calcite. Through the reaction experiments, it was observed that introduction of $CO_2$ could make alterations in dissolution characteristics of minerals, chemical compositions and properties of groundwater, and mineral compositions of aquifer materials. Results also showed that geochemical reactions such as cation exchange or dissolution/precipitation of minerals could play an important role to affect physical and chemical characteristics of geologic formations and groundwater.

Phase Equilibria of Ionic Liquid/Organic Compound/Supercritical CO2 Systems (이온성액체/유기화합물/초임계이산화탄소계의 상평형)

  • Lim, Bang-Hyun;Kim, Jong-Won;Paek, Sang-Min;Son, Bo-Kook;Lee, Yong-Rok;Lee, Chul Soo;Lee, Huen;Ra, Chun-Sup;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.128-137
    • /
    • 2006
  • The volume change of an ionic liquid and the phase separation behavior of room temperature ionic liquid(RTIL)/organic compound mixture in supercritical carbon dioxide were measured in a high pressure view cell. 1-Butyl-3-methylimidazolium hexafluorophosphate ([bmim][$PF_6$]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][$BF_4$]) was used as ionic liquid(IL). and methanol and dimethyl carbonate were used as organic compound. For a fixed amount of [bmim][$PF_6$] the lower critical endpoint (LCEP) pressure, where the liquid phase is split, decreased as increasing the amount of organic compound. The LCEP pressure became higher as the water content of ionic liquid was higher. However, for water contents above a certain value, no LCEP was formed. LCEP appeared 1.0 MPa higher for a mixture with [bmim][$BF_4$] than with [bmim][$PF_6$]. There was almost no difference in the K-point pressures for different types of ionic liquid and for different amounts of organic liquid. When the concentration of ionic liquid([bmim][$PF_6$]) (IL/(IL+MeOH)) in the initial liquid mixture was larger than 5.9 mol% at the LCEP of the mixture, the volume of $L_1$ because larger than the volume of $L_2$. When it was smaller, however, the volume became smaller, too. The volume change of ionic liquid in the presence of carbon dioxide decreased as increasing the temperature, while it increased as increasing the pressure. For temperatures between 313.15 to 343.15K at 300 bar, it was about 123~125 % of the original volume.

  • PDF

Splenocyte-mediated immune enhancing activity of Sargassum horneri extracts (괭생이 모자반 추출물의 비장세포 면역활성 증강 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Han, In-Jun;Lee, Byung-Soo;Park, Sang-Yun;Nho, Eun Young;Eom, Ji;Kim, Geon;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • Purpose: This study examined the immunological activity and optimized the mixture conditions of Sargassum horneri (S. horneri) extracts in vitro and in vivo models. Methods: S. horneri was extracted using three different methods: hot water extraction (HWE), 50% ethanol extraction (EE), and supercritical fluid extraction (SFE). Splenocyte proliferation and cytokine production (Interleukin-2 and Interferon-γ) were measured using a WST-1 assay and enzyme-linked immunosorbent assay, respectively. The levels of nitric oxide and T cell activation production were measured using a Griess assay and flow cytometry, respectively. The natural killer (NK) cell activity was determined using an EZ-LDH kit. Results: Among the three different types of extracts, HWE showed the highest levels of splenocyte proliferation and cytokine production in vitro. In the animal model, three different types of extracts were administrated for 14 days (once/day) at 50 and 100 mg/kg body weight. HWE and SFE showed a high level of splenocyte proliferation and cytokine production in the with and without mitogen-treated groups, whereas EE administration did not induce the splenocyte activation. When RAW264.7 macrophage cells were treated with different mixtures (HWE with 5, 10, 15, 20% of SFE) to determine the optimal mixture ratio of HWE and SFE, the levels of nitric oxide and cytokine production increased strongly in the HWE with 5% and 10% of SFE containing group. In the animal model, HWE with 5% and 10% of SFE mixture administration increased the levels of splenocyte proliferation, cytokine production, and activated CD4+ cell population significantly, with the highest level observed in the HWE with 5% of SFE group. Moreover, the NK cell activity was increased significantly in the HWE with 5% of SFE mixture-treated group compared to the control group. Conclusion: The optimal mixture condition of S. horneri with immune-enhancing activity is the HWE with 5% of SFE mixture. These results confirmed that the extracts of S. horneri and its mixtures are potential candidate materials for immune enhancement.