Synthesis of Copolymers Composed of 1H,1H,2H,2H-perfluorodecylmethacrylate and tert-butylmethacrylate and Their Lithographic Properties in Carbon Dioxide

1H,1H,2H,2H-퍼플로로데실메타크릴레이트와 tert-부틸메타크릴레이트로 구성된 공중합체의 합성 및 이산화탄소에서의 리소그라피 특성에 관한 연구

  • Hwang, Ha Soo (Division of Image and Information Engineering, Pukyong National University) ;
  • Lee, Jin-kyun (Department of Materials Science and Engineering, Cornell University) ;
  • Park, In (Green Materials Team, Environment and Energy Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Huh, Hoon (Green Materials Team, Environment and Energy Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lim, Kwon Taek (Division of Image and Information Engineering, Pukyong National University)
  • 황하수 (부경대학교 공과대학 화상정보공학부) ;
  • 이진균 (코넬대학교 재료공학과) ;
  • 박인 (한국생산기술연구원 환경에너지본부 청정소재팀) ;
  • 허훈 (한국생산기술연구원 환경에너지본부 청정소재팀) ;
  • 임권택 (부경대학교 공과대학 화상정보공학부)
  • Received : 2008.05.13
  • Accepted : 2008.06.10
  • Published : 2008.08.10

Abstract

A series of random copolymers, composed of 1H,1H,2H,2H-perfluoro decyl methacrylate (FDMA) as a $CO_2$-philic monomer and tert-butyl methacrylate (TBMA) as an acid labile monomer, were synthesized by free radical polymerization. The solubility of copolymers in carbon dioxide, light sensitivity at 365 nm exposure, and photoresist pattern formation properties were investigated. Furthermore, sub micron-sized poly(styrenesulfonate) : poly(3,4-ethylenedioxythiophene) (PSS : PEDOT) conducting polymer patterns were successfully prepared by pattern transfer.

자유 라디칼 중합법으로 친 이산화탄소성 단량체인 퍼플로로데실메타크릴레이트(FDMA)와 산에 불안정한 단량체인 tert-부틸메타크릴레이트(TBMA)로 구성된 랜덤 공중합체를 합성하였다. 합성된 공중합체의 이산화탄소에 대한 용해도 특성 및 365 nm 노광에서의 포토레지스트 감도 특성에 관하여 조사하였다. 또한, 랜덤 공중합체를 이용하여 형성된 패턴을 플라즈마 에칭을 통해 전도성 고분자인 poly(styrenesulfonate): poly(3,4-ethylenedioxythiophene) (PSS : PEDOT)에 전사하여 미크론크기의 PSS : PEDOT 패턴을 제조할 수 있었다.

Keywords

References

  1. T. Tanaka, M. Morigami, and N. Atoda, J. Appl. Phys., 32, 6059 (1993) https://doi.org/10.1143/JJAP.32.6059
  2. P. Licence, J. Ke, M. Sokolova, S. K. Ross, and M. Poliakoff, Green. Chem., 5, 99 (2003) https://doi.org/10.1039/b212220k
  3. G. Brunner, J. Food. Eng., 67, 21 (2005) https://doi.org/10.1016/j.jfoodeng.2004.05.060
  4. H. S. Hwang and K. T. Lim, Macromol. Rapid. Commun., 27, 722 (2006) https://doi.org/10.1002/marc.200600071
  5. Y. Jincao, M. A. Matthews, and C. H. Darvin, Ind. Eng. Chem. Res., 40, 5858 (2001) https://doi.org/10.1021/ie010424h
  6. C. K. Ober, A. H. Gabor, P. Gallagher-Wetmore, and R. D. Allen, Adv. Mater., 9, 1939 (1997)
  7. V. Q. Pham, R. J. Ferris, A. Hamad, and C. K. Ober, Chem. Mater., 15, 4893 (2003) https://doi.org/10.1021/cm034343i
  8. N. M. Felix, K. Tsuchiya, and C. K. Ober, Adv. Mater., 18, 442 (2006) https://doi.org/10.1002/adma.200501802
  9. E. Hoggan, K. Wang, D. Flowers, J. DeSimone, and R. Carbonell, IEEE. Trans. Semicond. Manuf., 17, 510 (2004) https://doi.org/10.1109/TSM.2004.837002
  10. W. Huh, S. Lee, H. Park, J. Kim, Y. Hong, and K. Yoo, Polym. - Korea., 28, 445 (2004)
  11. H. S. Hwang, H. Yuvaraj, W. S. Kim, W. K. Lee, Y. S. Gal, and K. T. Lim, J. Polym. Sci. Pol. Chem., 46, 1365 (2008) https://doi.org/10.1002/pola.22477
  12. J. Y. Heo, J. T. Kim, Y. S. Jeong, Y. S. Gal, and K. T. Lim, J. Ind. Eng. Chem., 10, 389 (2004)
  13. K. T. Lim, H. S. Hwang, W. Ryoo, and K. P. Johnston, Langmuir, 20, 2466 (2004) https://doi.org/10.1021/la035646u