• Title/Summary/Keyword: Superconductor magnetic field sensor

Search Result 14, Processing Time 0.02 seconds

Magnetic Field Sensor by Using Magnetic Effect in YBaCO Superconductor (자기적 성질을 응용한 YBaCuO계 초전도 자기센서)

  • 이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.491-498
    • /
    • 2001
  • The relationship between electrical properties of YBaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field apolarity sensor. The electrical resistance of the superconductor was increased by applying external magnetic field and even after removal of the magnetic field. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the materials by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. The appearance of the normal state yielded to enhance the electrical resistance. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Magnetic Field Sensor by Using Superconductor (초전도 자기 검출소자)

  • 이상헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.86-88
    • /
    • 2002
  • The relationship between electrical properties of superconductor and externally allied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive ta the external magnetic field and showed different responses depending on the direction of the magnetic field. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Magnetic Field Sensor by Using Magnetic Effect in YBaCuO Superconductor (BPSCCO 초전도 자성센서)

  • 이상헌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.137-139
    • /
    • 2003
  • The relationship between magnetic properties of BiPbSrCaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field.

  • PDF

Magnetic Field Sensor using BiPbSrCaCuO Superconductor (BiPbSrCaCuO 초전도 자기검출소자)

  • 이상헌;이성갑;이영희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.429-434
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of BiPbSrCaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than 100 $\mu\textrm{V}$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about 1.5${\times}$10$\^$-5/ T. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

Fabrication and Characteristics of Superconducting Magnetometer

  • Lee, Sang-Heon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.70-72
    • /
    • 2005
  • The relation between electrical properties of YBaCuO ceramic superconductor and externally applied magnetic field was studied. Electrical characteristics of the superconductor with trapped magnetic fluxes are extremely sensitive to the external magnetic field and show the different responses which depend on the direction of the magnetic field. Considering these properties of the superconductor with trapped magnetic fluxes, a magnetic sensor is fabricated. This sensor is able to detect simultaneously both the intensity and the direction of the magnetic field. The sensitivity of the sensor is less than 10$^{-4} T.

Electromagnetic Chracteristics of Bi System Ceramic Superconductor (Bi계 세라믹재료의 전자기특성)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1421-1423
    • /
    • 2003
  • The relationship between magnetic properties of BiPbSrCaCuo superconductor and externally applied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field.

  • PDF

Magnetic Properties of BiPbSrCaCuO System (Bi계 초전도체의 자기적 효과)

  • 이상헌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.355-357
    • /
    • 2002
  • The relationship between magnetic properties of BiPbSrCaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field.

  • PDF

Magnetic Sensor by Using Magnetic Effect in YBaCuO Superconductor

  • 이상헌;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.69-71
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of YBaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually the voltage drop across the sensor was changed from zero to a value more than 100 $mutextrm{V}$ by the applied magnetic field. The change in electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about $1.5\times$10$^{-5}$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Magnetic Properties of Oxide Superconducting Material (산화물 초전도체의 자기적 특성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.115-118
    • /
    • 2003
  • The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than $100\;{\mu}V$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was $2.9\;{\Omega}/T$. The sensing limit was about $1.5{\times}10^{-5}\;T$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Magnetic Characteristics of BiPbSrCaCuO Oxide Superconductor (BPSCCO 자기 효과)

  • Lee, Sangl-Heon;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.252-254
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF