• Title/Summary/Keyword: Superconducting Cable

Search Result 287, Processing Time 0.033 seconds

Quench Simulation and Analysis on Superconducting Cable Systems (초전도 케이블 계통에서의 켄치 모의 및 해석)

  • 김남열;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • In the design of superconducting cable systems, quench analysis have to be advanced for applying to a real systems. It is necessary to calculate the current, voltage and resistance during the quench. Simulation program named EMTDC was used to analyze the quench state. Normal zone evaluation and quench development with EMTDC are one of the major features of quench analysis. This paper presents the two kinds of quench control models which are the Switch Control Type and the Fortran Control Type. In case of the quench developing area, the simplicity cable model consist of resistance, inductance and capacitance. The impedance of the pipe type superconducting cable is calculated by numerical analysis method. The resistance and inductance increased during quench. However the variation have an effect on the fault current. The voltage was also developed by resistance and inductance. This paper presents the relationship between the current. voltage, resistance and inductance during quench.

Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer (초전도 전력 케이블에서의 stabilizer의 형태에 따른 와전류 손실 해석)

  • Choi S. J.;Song M. K.;Lee S. J.;Sim K. D.;Cho J. W.
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.83-86
    • /
    • 2005
  • The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  • PDF

Analysis of Transient State in the Superconducting distribution Cable Systems (초전도 배전 케이블 계통에서의 과도상태 해석)

  • Kim, Nam-Yoel;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.555-557
    • /
    • 2003
  • As electric power transmission systems grow to supply the increasing electric power demand, transmission capacity is larger. but that's really difficult to secure the location for power transmission and distribution to user. The high temperature superconducting(HTS) cable is a method to solve this problem. But for applying to real systems, it needs to investigate the effect of HTS cable. The most important things is the investigation of fault condition. the fault on HTS cable include the quench state. When a fault occur in a circuit, three critical parameters(temperature, current density, magnetic field) exist. when one of these parameters exceeds the critical value, the superconducting becomes normal-conducting. f the cooling power is insufficient to recover the superconducting state, the normal-conducting zone expands. In order to solve these problem, this paper present simulate the quench state considering the over-current and over-voltage in the informal circuit and analyze the quench state.

  • PDF

Conceptual Design of 154kv, 3GVA Class Superconducting Power Cable (154kV, 3GVA급 초전도 송전케이블의 개념설계)

  • Oh, B.H.;Cho, J.W.;Oh, S.S.;Kwon, Y.K.;Ha, D.W.;Ryu, K.S.;Jang, J.K.;NamKung, D.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.156-159
    • /
    • 1995
  • A superconducting power cable is one of the promising ways for transmitting huge electric power efficiently in the future. We performed a conceptual design of 154kV, 3GVA class superconducting power cable. The AC loss of superconductor was estimated by using the Bean model. The cross sectional area of stabilizer was calculated under the adiabatic condition. In this paper, the results of the conceptual design of superconducting power cable is described.

  • PDF

R&D trends of high current REBCO conductor

  • Oh, Sang-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • So far, large-scale scientific devices such as nuclear fusion tokamaks and high energy circular accelerators were constructed using high-current conductors made of metallic superconducting wires. Recently, as REBCO superconducting wires usable in high magnetic fields have been developed by several companies, researchesto apply high current cable type REBCO conductors to next-generation large superconducting magnets were also started. High critical currents of several kA or more in high magnetic fields have been successfully demonstrated on test samples of REBCO cable conductors by several research groups. In this review article, the main features and properties of the representative high current REBCO conductors such as CORC(Conductor On Round Core), TSTC(Twisted Stacked-Tape Cable) and RACC(Roebel-Assembled Coated Conductor), which are currently being developed at abroad are briefly introduced. Research activities of high-current density REBCO MHOS(Multi HTS layers on One Substrate) conductor at KERI, whose structure is different from other cable type REBCO conductors are also shortly introduced.

Review of the Conceptual Design for the Use of HTS Power Transmission Cable for a Metropolitan Area

  • Park, Sang-Bong
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.63-69
    • /
    • 2003
  • The necessity of compact high temperature superconducting cables is more keenly felt in densely populated metropolitan areas. Because the compact high-temperature superconducting cables can be installed in ducts and tunnels, thereby reducing construction costs and making the use of underground space more effective, the effect of introducing it to the power system will be huge. Seoul, Korea, is selected as a review model for this paper. The loads are estimated by scenario based on a survey and analysis of 345kV and 154kV power supply networks in this area. Based on this, the following elements for an urban transmission system are examined. (1) A method of constructing a model system to introduce high-temperature superconducting cables to metropolitan areas is presented. (2) A case study is conducted through the analysis of power demand scenarios, and the amount of high-temperature superconducting cable to be introduced by scenario is examined. (3) The economy involved in expanding existing cables and introducing high-temperature superconducting cables(ducts or tunnels) following load increase in urban areas is examined and compared., and standards for current cable ducts are calculated. (4) The voltage level that can be accommodated by existing ducts is examined.

The Characteristics on AC Losses and Construction of Prototype High-Tc Superconducting Cable (Prototype 고온 초전도 케이블의 제작 및 교류손실)

  • 김영석;이병성;정종만;백승명;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.97-100
    • /
    • 2000
  • Superconducting power cable is one of the most promising energy application of high-Tc superconductors (HTS). Thus, we investigated previously the characteristics on electrical and mechanical Bi-2223 Ag sheathed tape. And a prototype HTS cable have been designed, constructed and tested. The result shows that the transport current of HTS cable (1, 19-filament) in LN2 was 116[A], 240[A], respectively. And AC loss of HTS cable(19-filament) was 1.7 [W/m] in 240 [A] loading.

  • PDF

Study on the Stability Evaluation of the High-Tc Superconducting Power Cable (고온초전도 전력케이블의 안정도 평가를 위한 교류손실에 관한 연구)

  • Bae, J.H.;Choi, S.J.;Lee, S.J.;Cho, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1236-1240
    • /
    • 2007
  • In order to evaluate if the high-Tc superconducting(HTS) power cable is operating stably, the characteristics of the HTS power cable should be found out. The properties of HTS tapes by measuring the voltage with respect to the current can be archived. But, the HTS power cable is different from the case of HTS tapes. This method is invalid because of the electromagnetic fields caused by other HTS tapes. In this paper, the stability evaluation of the HTS cable was performed by the following procedure. First, the voltage-current characteristics of HTS tape were measured and the electromagnetic field distributions of the HTS power cable with the external magnetic field were analyzed. Second, the losses of the HTS power cable were calculated using the result of the measurement and the analysis. Finally, the stable operation of the HTS power cable was evaluated on the basis of the losses of the superconducting cable.

Analysis of Current Distribution of Multi-Layer HTSC Power Cable dut to Pitch length and winding direction (피치길이와 결선방향에 따른 다층 고온초전도 전력케이블의 전류분류 분석)

  • Lee Jong-Hwa;Lim Sung-Hun;Ko Seokcheol;Park Chung-Ryul;Han Byoung-Sung;Hwang Si Dole
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1133-1135
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of important parameters in high-temperature superconducting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and ac loss. In this paper, the transport current and magnetic field distributions at conducting layers were investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer. The transport current distribution due to the pitch length and winding direction was improved in case of HTSC power cable with shield layer.

  • PDF

Modelling and Transient Analysis of a 3-Phase Multi-Layer HTS Coaxial Cable using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 3 상 다층 고온 초전도 케이블의 모델링 및 과도 해석)

  • Lee, Jun-Yeop;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Three-phase multi-layer high temperature superconducting coaxial (TPMHTSC) cable is being actively studied due to advantages such as the reduction of the amount of superconducting wire usage and the miniaturization of the cable. The electrical characteristics of TPMHTSC cables differ from those of conventional superconducting cables, so sufficient analysis is required to apply them to the actual system. In this paper, the authors modeled 22.9 kV, 60 MVA TPMHTSC cable and analyzed the transient characteristics using a PSCAD/EMTDC-based simulation. As a result, when a fault current flows in TPMHTSC cable, most of the fault current is bypassed through the copper former layers. At this time, the total cable temperature increased by about 5 K. Through this study, we can verify the reliability of the TPMHTSC cable against the transient state, and it can be helpful for the practical application of the cable in the future.