• Title/Summary/Keyword: Supercomputer Performance

Search Result 58, Processing Time 0.022 seconds

A study of grid network performance management system through web service platform-independent (플랫폼 독립적인 웹서비스를 이용한 그리드 네트워크 성능 관리 시스템에 대한 연구)

  • Song, Ji-Hyun;Ahn, Seong-Jin;Chung, Jin-Wook
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • The advent of supercomputers contribute greatly in overcoming scientific and academic problems that were previously difficult to solve. However, the supercomputer itself suffers from the problem of being considerable cost. In response, the concept of grid computing, to use the resources of distribute computers connected with each other, was created. This system uses connection oriented protocols to integrate and manage the resources of different types of distributed systems, yet it has the problem of compatibility between protocols of other types. In this paper, a system to manage grid network performance through XML-based SOAP web service which is platform-independent, is proposed.

  • PDF

Large-scale Simulation for Optimal Design of Composite Curved Piezoelectric Actuator (복합재료 곡면형 자동기의 최적설계를 위한 대규모 수치해석 연구)

  • Chung, Soon-Wan;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.5-8
    • /
    • 2005
  • In this paper, the electromechanical displacements of curved piezoelectric actuators composed of PZT ceramic and laminated composite materials are calculated based on high performance computing technology and the optimal configuration of composite curved actuator is examined. To accurately predict the local pre-stress in the device due to the mismatch in coefficients of thermal expansion, carbon-epoxy and glass-epoxy as well as PZT ceramic are numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers increases the number of degrees of freedom, large-scale structural analyses are performed through the PEGASUS supercomputer, which is installed in our laboratory. In the first stage, the curved shape of the actuator and the internal stress in each layer are obtained by the cured curvature analysis. Subsequently, the displacement due to the piezoelectric force (which is resulted from applied voltage) is also calculated. The performance of composite curved actuator is investigated by comparing the displacements obtained by the variation of thickness and elastic modulus of laminated composite layers. In order to consider the finite deformation in the first analysis stage and include the pre-stress due to curing process in the second stage, nonlinear finite element analyses are carried out.

  • PDF

A Study on the Revitalization of High Performance Computing in Korea

  • Choi, Younkeun;Lee, Hyungjin;Jeong, Hyonam;Cho, Jaehyuk
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.129-136
    • /
    • 2016
  • Crucial aspects to successfully realizing the re-emergence of a contemporary and sustainable supercomputing community in South Korea will involve the devoted efforts and support from key government and R&D organizations. We suggest various supplementation plans regarding the roles of support for the statutory plan. This includes the committee and the plans which are often missing necessary support systems that help competent ministries to plan properly according to the missions of the research center. This dissertation suggests that adjustment in the HPC trends will depend upon exposing and correcting problems in the law as well as overall improvement of the law. Also, the total development of a super computing market is necessary. The results of these guidelines will create a spread of demand for supercomputing for national IT resource sharing, and will foster the development of supercomputer specialists worldwide. Other major end results include significant increases in research productivity and increased rates of product development.

Design and Implementation of HPC Job Management Framework for Computational Scientific Simulation (계산과학 시뮬레이션을 위한 HPC 작업 관리 프레임워크의 설계 및 구현)

  • Yu, Jung-Lok;Kim, Han-Gi;Byun, Hee-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.554-557
    • /
    • 2016
  • Recently, supercomputer has been increasingly adopted as a computing environment for scientific simulation as well as education, healthcare and national defence. Especially, supercomputing system with heterogeneous computing resources is gaining resurgence of interest as a next-generation problem solving environment, allowing theoretical and/or experimental research in various fields to be free of time and spatial limits. However, traditional supercomputing services have only been handled through a simple form of command-line based console, which leads to the critical limit of accessibility and usability of heterogeneous computing resources. To address this problem, in this paper, we provide the design and implementation of web-based HPC (High Performance Computing) job management framework for computational scientific simulation. The proposed framework has highly extensible design principles, providing the abstraction interfaces of job scheduler (as well as bundle scheduler plug-ins for LoadLeveler, Sun Grid Engine, OpenPBS scheduler) in order to easily incorporate the broad spectrum of heterogeneous computing resources such as cluster, computing cloud and grid. We also present the detailed specification of HTTP standard based RESTful endpoints, which manage simulation job's life-cycles such as job creation, submission, control and status monitoring, etc., enabling various 3rd-party applications to be newly created on top of the proposed framework.

  • PDF

Performance Analysis of a NOW According to the Number of Processes and Execution Time (프로세스의 수와 실행시간에 따른 NOW의 성능 분석)

  • 조수현;김영학
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.135-145
    • /
    • 2002
  • Recently, instead of a high-cost supercomputer, there haws been widely used a NOW system that consists of low-cost PCs and workstations connected all over the network In a NOW, performance for parallel processing depends on the computation pouter of each computer and communication time. Currently, a lot of methods have been proposed in order to increase the performance of parallel processing. However, the previous results have been studied in the view of balancing work load as the computation pouter of each computer. If a computer has multiple work precesses in a NOW, we can predict a decrease of communication tire needed in message passing, Therefore, in this paper, we analyzes factors of improving the performance in the view of work precesses, and evaluates experimently an effect on total performance as the number of work processes increases. Also, we propose a new broadcasting method to be used in experiment of this paper. This paper uses the LAM/MPI for an experimental evaluation.

  • PDF

A Study on the Implementation Method for the Achievement of the Korea High-Performance Computing Innovation Strategy

  • Choi, Youn Keun;Koh, Myoungju;Jung, Youg Hwan;Hur, YoungJu;Lee, Yeonjae;On, Noori;Hahm, Jaegyoon
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.76-85
    • /
    • 2022
  • At the 8th National High-Performance Computing (HPC) Committee convened in 2021, the "National High-Performance Computing Innovation Strategy (draft) for the 4th Industrial Revolution Era" was deliberated and the original draft was approved. In this proposal, the Ministry of Science and ICT in KOREA announced three major plans and nine detailed projects with the vision of "Realizing the 4th industrial revolution quantum jumping by leaping into a high-performance computing powerhouse." Thereby the most important policy about national mid-term and long-term HPC development was established and called the HPC innovation strategy (hereinafter "the innovation strategy"). The three plans of the innovation strategy proposed by the government are: Strategic HPC infrastructure expansion; Secure source technologies; and Activate innovative HPC utilization. Each of the detailed projects has to be executed nationally and strategically. In this paper, we propose a strategy for the implementation of two items ("Strategic HPC infrastructure expansion" and "activate innovative HPC utilization") among these detailed plans.

Design of MAHA Supercomputing System for Human Genome Analysis (대용량 유전체 분석을 위한 고성능 컴퓨팅 시스템 MAHA)

  • Kim, Young Woo;Kim, Hong-Yeon;Bae, Seungjo;Kim, Hag-Young;Woo, Young-Choon;Park, Soo-Jun;Choi, Wan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • During the past decade, many changes and attempts have been tried and are continued developing new technologies in the computing area. The brick wall in computing area, especially power wall, changes computing paradigm from computing hardwares including processor and system architecture to programming environment and application usage. The high performance computing (HPC) area, especially, has been experienced catastrophic changes, and it is now considered as a key to the national competitiveness. In the late 2000's, many leading countries rushed to develop Exascale supercomputing systems, and as a results tens of PetaFLOPS system are prevalent now. In Korea, ICT is well developed and Korea is considered as a one of leading countries in the world, but not for supercomputing area. In this paper, we describe architecture design of MAHA supercomputing system which is aimed to develop 300 TeraFLOPS system for bio-informatics applications like human genome analysis and protein-protein docking. MAHA supercomputing system is consists of four major parts - computing hardware, file system, system software and bio-applications. MAHA supercomputing system is designed to utilize heterogeneous computing accelerators (co-processors like GPGPUs and MICs) to get more performance/$, performance/area, and performance/power. To provide high speed data movement and large capacity, MAHA file system is designed to have asymmetric cluster architecture, and consists of metadata server, data server, and client file system on top of SSD and MAID storage servers. MAHA system softwares are designed to provide user-friendliness and easy-to-use based on integrated system management component - like Bio Workflow management, Integrated Cluster management and Heterogeneous Resource management. MAHA supercomputing system was first installed in Dec., 2011. The theoretical performance of MAHA system was 50 TeraFLOPS and measured performance of 30.3 TeraFLOPS with 32 computing nodes. MAHA system will be upgraded to have 100 TeraFLOPS performance at Jan., 2013.

Deployment and Performance Analysis of Data Transfer Node Cluster for HPC Environment (HPC 환경을 위한 데이터 전송 노드 클러스터 구축 및 성능분석)

  • Hong, Wontaek;An, Dosik;Lee, Jaekook;Moon, Jeonghoon;Seok, Woojin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.9
    • /
    • pp.197-206
    • /
    • 2020
  • Collaborative research in science applications based on HPC service needs rapid transfers of massive data between research colleagues over wide area network. With regard to this requirement, researches on enhancing data transfer performance between major superfacilities in the U.S. have been conducted recently. In this paper, we deploy multiple data transfer nodes(DTNs) over high-speed science networks in order to move rapidly large amounts of data in the parallel filesystem of KISTI's Nurion supercomputer, and perform transfer experiments between endpoints with approximately 130ms round trip time. We have shown the results of transfer throughput in different size file sets and compared them. In addition, it has been confirmed that the DTN cluster with three nodes can provide about 1.8 and 2.7 times higher transfer throughput than a single node in two types of concurrency and parallelism settings.

The Technology Trend of Interconnection Network for High Performance Computing (고성능 컴퓨팅을 위한 인터커넥션 네트워크 기술 동향)

  • Cho, Hyeyoung;Jun, Tae Joon;Han, Jiyong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.9-15
    • /
    • 2017
  • With the development of semiconductor integration technology, central processing units and storage devices have been miniaturized and performance has been rapidly developed, interconnection network technology is becoming a more important factor in terms of the performance of high performance computing system. In this paper, we analyze the trend of interconnection network technology used in high performance computing. Interconnect technology, which is the most widely used in the Supercomputer Top 500(2017. 06.), is an Infiniband. Recently, Ethernet is the second highest share after InfiniBand due to the emergence of 40/100Gbps Gigabit Ethernet technology. Gigabit Ethernet, where latency performance is lower than InfiniBand, is preferred in cost-effective medium-sized data centers. In addition, top-end HPC systems that demand high performance are devoting themselves from Ethernet and InfiniBand technologies and are attempting to maximize system performance by introducing their own interconnect networks. In the future, high-performance interconnects are expected to utilize silicon-based optical communication technology to exchange data with light.

Implementation of a GPU Cluster System using Inexpensive Graphics Devices (저가의 그래픽스 장치를 이용한 GPU 클러스터 시스템 구현)

  • Lee, Jong-Min;Lee, Jung-Hwa;Kim, Seong-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1458-1466
    • /
    • 2011
  • Recently the research on GPGPU has been carried out actively as the performance of GPUs has been increased rapidly. In this paper, we propose the system architecture by benchmarking the existing supercomputer architecture for a cost-effective system using GPUs in low-cost graphics devices and implement a GPU cluster system with eight GPUs. We also make the software development environment that is suitable for the GPU cluster system and use it for the performance evaluation by implementing the n-body problem. According to its result, we found that it is efficient to use multiple GPUs when the problem size is large due to its communication cost. In addition, we could calculate up to eight million celestial bodies by applying the method of calculating block by block to mitigate the problem size constraint due to the limited resource in GPUs.