• Title/Summary/Keyword: Supercapacitor energy storage system

Search Result 55, Processing Time 0.037 seconds

Key Technologies of Supercapacitor Energy Storage System of IP Transmitter

  • Zeng, Zhihui;Wang, Xiaowei;Wei, Yanfang;Hu, Zhiguo;Yu, Yangxiao;Zhang, Zhigang
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.316-331
    • /
    • 2019
  • A practical application of a supercapacitor energy storage system in a polarization instrument is proposed on the basis of the energy storage requirements of an induced polarization (IP) transmitter for geophysical exploration. We focused on the energy storage system of a supercapacitor, the topology of the power converter, and the system control strategy as key technologies, and we performed theoretical research and experimental tests on the system and developed an experimental platform. The experiments validated the theoretical research on the key technologies of the supercapacitor energy storage system and demonstrated the effectiveness of the innovation. Results showed that the storage system is efficient and satisfies the energy storage needs of the IP transmitter.

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

A Study on the Characteristics of Supercapacitor for High Voltage System (고전압 시스템을 위한 초고용량 축전지 특성 연구)

  • Kim, Byeong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • Supercapacitors as novel energy storage devices between conventional capacitors and batteries, with more specific capacitance and energy densities than conventional capacitors and more power densities than batteries are to be used in many fields. And, social demand on fuel economy and reducing pollution needs equipment of new function such as energy storage system with good power performance, high cyclability and good energy efficiency. Supercapacitor is regarded as one of good alternatives for meeting the requirement of market with excellent power performance and high cyclability. This paper deals with the fundamental characteristics of supercapacitor unit and charge and discharge behavior of supercapacitor module for developing 42V hybrid energy storage system with lead acid battery and supercapacitor in order to adopt to 42V power net for vehicle.

A Study on the Characteristics of Supercapacitpr Module for High Voltage System (고전압 시스템을 위한 초고용량 축전지 모듈 특성 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1237-1241
    • /
    • 2010
  • Supercapacitors as novel energy storage devices between conventional capacitors and batteries, with more specific capacitance and energy densities than conventional capacitors and more power densities than batteries are to be used in many fields. Supercapacitor is regarded as one of good alternatives for meeting the requirement of market with excellent power performance and high cyclability. This paper deals with the characteristics of charge and discharge behavior of supercapacitor module for developing 42V hybrid energy storage system with lead acid battery and supercapacitor in order to adopt to 42V power net for vehicle. An analysis performed in this paper indicates that supercapacitor storage system may be cost effective for high cycle applications.

The Design and Electrical Characteristics of 50kW Energy Storage System Using Hybrid Supercapacitor (하이브리드 슈퍼커패시터를 이용한 50kW급 에너지 저장 장치 설계 및 전기적 특성)

  • Mang, Ju-Cheul;Cho, Moon-Taek;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.854-859
    • /
    • 2018
  • This paper describes the characteristics of a hybrid supercapacitor module for power quality stabilization. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. A cylindrical 7500F hybrid supercapacitor ($60{\times}138mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. Considering the ESR and efficiency has been designed to module with 41.6F 480V design results in 180 series combination. In order to determine the characteristics of the hybrid supercapacitor module for power system, hybrid supercapacitor cells were connected in series with active balancing circuit. As a result of measuring the 50kw UPS, it was discharged at the current of 104A~143A during the discharge in the voltage range of 350V~480V, and the compensation time at discharge was measured to be about 30s. These results can be used to stabilization of power quality by applying hybrid supercapacitor module.

A Control Method of Electric Railway Vehicle Recycle Energy Storage System Using Supercapacitor (슈퍼커패시터를 이용한 전동차량 화생 에너지 저장 시스템의 제어기법)

  • Noh, Se-Jin;Lee, Jin-Mok;Son, Kyoung-Min;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.97-99
    • /
    • 2008
  • It is possible to suppress voltage drops, power loading fluctuations and regeneration power lapses for DC railway systems by applying an energy storage system. Recently the electric double layer capacitor (EDLC) of the rapid charge/discharge type has been developed and used in wide ranges. The on board energy storage system with supercapacitor for railway vehicles presented in this paper seems to be a reliable technical solution with an enormous energy saving potential. In this paper, an efficient charge and discharge control method of a bidirectional DC-DC converter using the supercapacitor is proposed.

  • PDF

Preparation of polythiophene electrode and it's application for supercapacitor (폴리싸이오펜전극의 제조와 수퍼커패시터로서의 응용)

  • ;;Katsuhiko Naoi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.573-576
    • /
    • 2001
  • In the research fields of energy storage, and more specifically of supplying high powers, electrochemical supercapacitor have been among the most studied systems for many years. One of the possible applications is in electric vehicles. We have been working on electronically conducting polymers for use as active materials for electrodes in supercapacitors. These polymers have the ability of doping and undoping with rather fast kinetics and have an excellent capacity for energy storage. polythiophene (Pth) and polyparafluorophenylthiophene (PFPT) have been chemically synthesized for use as active materials in supercapacitor electrodes. Electrochemical characterization has been performed by cyclic voltammetry and an electrode study has been achieved to get the maximun capacity out of the polymers and give good cyclability. specific capacity values of 7mAh/g and 40mAh/g were obtained for PFPT and polythiophene, respectively. Supercapacitors have been built to characterize this type of system. Energy storage levels of 260F/g were obtained with Pth and 110F/g with PFPT

  • PDF

A Modularized Equalizer for Supercapacitor Strings in Hybrid Energy Storage Systems

  • Gao, Zhigang;Jiang, Fenlin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1469-1482
    • /
    • 2016
  • In hybrid energy storage systems, supercapacitors are usually connected in series to meet the required voltage levels. Equalizers are effective in prolonging the life of hybrid energy storage systems because they eliminate the voltage imbalance on cells. This study proposes a modularized equalizer, which is based on a combination of a half-bridge inverter, an inductor, and two auxiliary capacitors. The proposed equalizer inherits the advantages of inductor-based equalization systems, but it also offers unique merits, such as low switching losses and an easy-to-use control algorithm. The zero-voltage switching scheme is analyzed, and the power model is established. A fixed-frequency operation strategy is proposed to simplify the control and lower the cost. The switching patterns and conditions for zero-voltage switching are discussed. Simulation results based on PSIM are presented to verify the validity of the proposed equalizer. An equalization test for two supercapacitor cells is performed. An experimental hybrid energy storage system, which consists of batteries and supercapacitors, is established to verify the performance of the proposed equalizer. The analysis, simulation results, and experimental results are in good agreement, thus indicating that the circuit is practical.

Design of Charging/Discharging System for Supercapacitor Used in Energy Storage Equipment (에너지저장용 슈퍼커패시터의 충방전 시스템 설계)

  • Kim, Jin-Young;Jung, Jae-Hun;Cho, Won-Woo;Nho, Eui-Cheol;Kim, In-Dong;Chun, Tae-Won;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.1-2
    • /
    • 2010
  • This paper describes the design of an energy storage system using supercapacitor. The maximum discharging power and duration of the system are 5 kW and 30 second, respectively. To meet the discharging requirement a supercapacitor module(50.4 V 166 F) is selected, and its model parameters are obtained through experiment. The design and simulation results show the usefulness of the system.

  • PDF

An investigation into energy harvesting and storage to power a more electric regional aircraft

  • Saleh, Ahmed;Lekakou, Constantina;Doherty, John
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This is an investigation for a more electric regional aircraft, considering the ATR 72 aircraft as an example and the electrification of its four double slotted flaps, which were estimated to require an energy of 540 Wh for takeoff and 1780 Wh for landing, with a maximum power requirement of 35.6 kW during landing. An analysis and evaluation of three energy harvesting systems has been carried out, which led to the recommendation of a combination of a piezoelectric and a thermoelectric harvesting system providing 65% and 17%, respectively, of the required energy for the actuators of the four flaps. The remaining energy may be provided by a solar energy harvesting photovoltaic system, which was calculated to have a maximum capacity of 12.8 kWh at maximum solar irradiance. It was estimated that a supercapacitor of 232 kg could provide the energy storage and power required for the four flaps, which proved to be 59% of the required weight of a lithium iron phosphate (LFP) battery while the supercapacitor also constitutes a safer option.