• 제목/요약/키워드: Super-Cavitation

검색결과 34건 처리시간 0.02초

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

수중 운동체 주변에 형성되는 환기 초공동(ventilated supercavitation) 현상 가시화 (Visualization of ventilated supercavitation phenomena around a moving underwater body)

  • 정재호;조연우
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.26-29
    • /
    • 2015
  • A laboratory experiment was carried out to observe and visualize ventilated supercavitation phenomena around a moving underwater body which is attached to a newly designed high-speed (Max. 20 m/s) carriage system in a wave tank. Compared to the existing many other experimental studies using cavitation tunnels, where the body is at rest and the fluid is in motion in a bounded or closed environment, the present experimental study deals with super-cavity formation in unbounded or free-surface bounded environments, where the body is in motion and the fluid is at rest. Main attention is paid to the effective visualization of the steady-state cavity formations around a moving body and, those cavity formations are reported pictorially according to the body speed, ventilated air-pressure, and with or without a cavitator.

초음파화학 반응에 의한 Ag 도핑 광촉매용 나노 TiO2 분말의 합성 (Synthesis of Nano-Scale Photocatalyic TiO2 Powder Doped with Ag by Sonochemistry Reaction)

  • 조성훈;이수완
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.169-173
    • /
    • 2009
  • In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop $TiO_2$ materials and $TiO_2$ devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create $TiO_2$ nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. $TiO_2$ powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.

2차원 대칭 스트럿 주위의 초월 공동 유동 문제의 해석 (Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut)

  • 김영기;이창섭
    • 대한조선학회지
    • /
    • 제27권4호
    • /
    • pp.15-26
    • /
    • 1990
  • 본 연구는 표면 양력관 이론을 이용하여 초월 공동이 발생한 2차원 날개의 유동해석을 위한 제반 경계 조건을 검증하고 공동 뒷부분의 모형을 비교 검토한다. 해석해가 존재하는 2차원 대칭 스트럿 주위의 초월 공동 현상을 수치적으로 해석하여 그 결과를 해석해와 비교함으로써 표면 양력판 이론에 의한 프로펠러 공동 문제 해석의 가능성을 입증하였다. 특히, 공동 뒷부분의 비 선형 닫힘 모형, 타원형 닫힘 모형, 그리고 선형 닫힘 조건을 서로 비교 분석함으로써 공동 문제 해결에서 가장 중요한 공동 닫힘 조건의 영향을 보였다.

  • PDF