• Title/Summary/Keyword: Super-Capacitor

Search Result 106, Processing Time 0.024 seconds

Electric Properties of Carbon Aerogel for Super Capacitors (카본 에어로겔을 이용한 초고용량 커패시터의 전기적 특성)

  • Han, Jeong-Woo;Lee, Kyeong-Min;Lee, Du-Hee;Lee, Sang-Won;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.660-666
    • /
    • 2010
  • Carbon aerogels are promising materials as electrodes for electrical double layer capacitors (EDLCs). An optimum process is presented for synthesis of nanoporous carbon aerogels via pyrolyzing resorcinol-formaldehyde (RF) organic aerogels, which could be cost-effectively manufactured from RF wet gels. The major reactions between resorcinol and formaldehyde include an addition reaction to form hydroxymethyl derivatives ($-CH_2OH$), and then a condensation reaction of the hydroxymethyl derivatives ($-CH_2-$)- and methylene ether ($-CH_2OCH_2-$) bridged compounds. The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM and TEM. The application of the resultant carbon for electrodes of electric double layers capacitor (EDLC) in organic TEABF4/ACN electrolyte indicated that the ESR, as low as 55 $m{\Omega}$, was smaller than for commercially activated carbons. And EDLC with carbon Aerogel electrodes has an excellent stable more than for commercially activated carbons.

A Study on Reliability Test of Super-Capacitor for Electric Railway Regenerative Energy Storage System (전동차 회생에너지 저장 시스템용 슈퍼커패시터의 신뢰성시험에 관한 연구)

  • Lee, Sang-Min;Kim, Nam
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.238-244
    • /
    • 2016
  • Purpose: Domestic electric railway Regenerative Energy Storage System seriously affects the maintenance cost of the total operating expenses of nearly 60% of the total LCC (Life Cycle Cost) due to high dependence on foreign Leading company. Therefore by developing the system, it is important to lower the maintenance cost in the domestic supply. This study about the capacitor Reliability test and the purpose of this study is development electric railway Regenerative Energy Storage System. Methods: In case of, having a close relation between the temperature and the reaction rate, Accelerated Model was known that according to Arrhenius' law of chemical activity. If you apply this formula in using allowable temperature range of the capacitor can induce the Arrhenius empirical formula used in much Manufacture Fields. We evaluate the capacitors Leading company through the Arrhenius model. in order to providing a base for the localization of Ultra Capacitor. Conclusion: In this paper, we conducted a reliability test. And it was performed by the accelerated life test and Cycle Test with temperature and C-rate. and then MTBF and B10 life are estimated by analyzing the accelerated life test result. This is thought to need detailed study applying complex stress than about whether it matches the actual behavior in electric railway.

Utility AC Frequency to High Frequency AC Power Frequency Converter without Electrolytic Capacitor Link for Consumer Induction Heating Appliances

  • Sugimura, H.;Eid, A.;Lee, H.W.;Kwon, S.K.;Suh, K.Y.;Nakaoka, M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1364-1367
    • /
    • 2005
  • In this paper, a novel prototype topology of soft switching PWM controlled high frequency AC power conversion circuit without DC voltage smoothing chemical capacitor filter link from the voltage grid of utility frequency AC power supply source with 60Hz-100V or 60Hz-200V is proposed and introduced for innovative consumer induction heating(IH) boiler applications as hot water producer, steamer and super heated vapor steamer.

  • PDF

Development of Regenerative Energy Storage System for An Electric Vehicle Using Super-Capacitors (슈퍼커패시터를 이용한 전기차량용 회생제동 에너지 저장장치 개발)

  • Chung, Dae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.544-551
    • /
    • 2011
  • This paper presents the circuit arrangement and effective control method of regenerative energy storage system for an electric vehicle using super-capacitors as the braking energy storage element. A bi-directional controlled current flow of the DC-DC converters with the capacitor bank is connected in parallel with battery, and is controlled so that the whole of the braking energy is effectively absorbed into the capacitors and released back to the electric motor upon acceleration. The converter needs the series-parallel switching circuit for making the best use of the series capacitors and for limiting the step-up ratio of the boost converter. The proposed methods are verified by computer simulation and experimental set-up. They are usefully applied to the electric vehicles such as green cars, electric motorcycles, bike, etc which are power- supplied by the electric batteries.

Technical Survey of Highly Efficient Cargo Handling System (고효율 하역장비의 기술동향)

  • Park, Kyoung-Taik;Kim, Kyung-Han;Kim, Doo-Hyung;Cho, Gyu-Baek;Kim, Han-Me
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.276-277
    • /
    • 2010
  • This paper deals with energy storage system for saving the energy of RTGC(rubber tired gantry crane). Advantage and disadvantage of battery, super-capacitor, and flywheel as an energy storage system were surveyed. Even if a flywheel energy storage system includes some problems such as manufacturing technique and high price, it is surveyed with a promising energy storage system In addition, RTGCs using battery or flywheel as the energy storage system were quantitatively presented through a survey of literatures. It was found that the both RTGC with those systems can reduced the waste of energy.

  • PDF

Applying Hybrid Type Energy Storage System in AC High Speed Railway (하이브리드 타입 에너지 저장장치의 교류 고속철도 적용)

  • Jeon, Yong-Joo;Kang, Byoung-Wook;Chai, Hui-Seok;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.60-66
    • /
    • 2014
  • In case of DC railway, value of ESS(Energy Storage System) is already approved. Whereas AC railway system, there are a lot of differences such as system design and operation pattern. Therefore there is doubt about AC ESS usefulness. Especially, regenerative energy can return to the source. So in case of AC 25kV system, it is necessary to consider different operation algorithm compare to DC railway system. In this paper ESS which is installed in AC high-speed railway was introduced. Power consumption pattern of High speed trains were analyzed, proper storage material was reviewed and operation algorithm was suggested. Super capacitor and Battery was used with hybrid type. Super capacitor was used to handle short term energy movement because of its prompt response and battery was used to handle long term energy movement because of its high energy density. Also in case of operation algorithm, phase control method was upgraded compare to voltage magnitude detection method.

An Isolated Power System Based on Variable Speed Engine Generator with Super-capacitor (슈퍼캐패시터와 가변속 엔진발전기를 이용한 독립형 전원 시스템)

  • Lee, Joon-Hwan;Lee, Seung-Hwan;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.15-17
    • /
    • 2007
  • The variable speed engine generator set is interested for an isolated power system due to reduced fuel consumption and less emission. However, because of sluggish dynamic behavior of the internal combustion engine the power quality would be degraded during the sudden load power surge, where the power required by the load is not available by the engine due to the reduced engine speed. An isolated power system based on variable speed engine with a super-capacitor bank improves dynamic characteristics under sudden load change, and power quality, fuel consumption, and pollutants can be reduced remarkably. Also, it is verified by the computer simulation that the inverter of 3phase-4leg is compatible to the isolated power system with unbalanced load. In this paper, the feasibility of the system has been verified based on a 26kw commercial diesel engine system.

  • PDF

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Model Predictive Control for Tram Charging and Its Semi-Physical Experimental Platform Design

  • Guo, Chujia;Zhang, Aimin;Zhang, Hang
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1771-1779
    • /
    • 2018
  • Modern trams with a super capacitor have gained a lot of attention in recent years due to its reliability, convenience, energy conservation and environmental friendliness. Because of its special charging characteristic, the traditional charging structure and control strategy cannot satisfy its charging requirements. This paper presents a new charging topology for fast charging modern trams with a super capacitor and it designs a controller using continuous control set model predictive control (CCS-MPC). There are three contributions in this paper. First, a new charging structure is designed and its mathematics model is derived. The cascade structure is adopted instead of the parallel structure to simplify the control process and to keep the rated power of the controllable part low. Second, a MPC control strategy is proposed to satisfy the charging characteristic. The optimal control signal can be obtained by solving the designed optimization problem. The optimal control signal is related to the discrete control action. In addition, mapping between the continuous control signal and the discrete control action is designed. Third, a semi-physical experimental platform is built to verify the proposed topology and control method. The simulation model and experiment platform are built to verify the correctness of the new structure and its control method. The results obtained show that the new topology can work effectively.

Hybrid Current Mode Controller with Fast Response Characteristics for DC/DC Converter (빠른 응답특성을 갖는 DC/DC 컨버터 하이브리드 전류 모드 제어기)

  • Oh, Seung-Min;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.134-137
    • /
    • 2019
  • A wide-bandwidth current controller is required for fast charging/discharging of super capacitor applications. Peak current mode is generally used to accomplish fast charging/discharging because this mode has fast response characteristics. However, the peak current mode control must have a slope compensation function to restrain sub-harmonics oscillation. The slope must be changed accordingly if the controlled output voltage is varied. However, changing the slope for every changed output voltage is not easy. The other solution, selecting the slope as the maximum value, causes a slow response problem to occur. Therefore, we propose a hybrid mode controller that uses a peak current and a newly specified valley current. Through the proposed hybrid mode control, the sub-harmonic oscillation does not occur when the duty is larger than 0.5 because of the fast response.