• Title/Summary/Keyword: Super structure

Search Result 584, Processing Time 0.026 seconds

Simulations of time dependent temperature distributions of Super-ROM disk structure using finite element method (유한요소법을 이용한 Super-ROM 디스크 구조의 열 분포 해석)

  • Ahn, Duck-Won;You, Chun-Yeol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.132-136
    • /
    • 2005
  • It is widely accepted that the reading mechanism of Super-RENS(super-resolution near field structure) and Super-ROM(super-resolution read only memory) is closely related with non-linear temperature dependent material properties such as refractive indices, phase change. Furthermore, the dynamic change of the temperature distribution also an essential part of reading mechanism of Super-RENS/ROM. Therefore, the knowledge of the temperature distribution as a function a time is one of the important keys to reveal the physics of reading mechanism in Super-RENS/ROM. We calculated time-dependent temperature distribution in a 3-dimensional Super-ROM disk structure when moving laser beam is irradiated. With a help of commercial software FEMLAB which employed finite element method, we simulated the temperature distribution of ROM structure whose pit diameter is 120-nm with 50-nm depth. Energy absorption by moving laser irradiation, time variations of heat transfer processes, heat fluxes, heat transfer ratios, and temperature distributions of the complicate 3-dimensional ROM structure have been obtained.

  • PDF

A Study on the Charge Balance Characteristics of Super Junction MOSFET with Deep-Trench Technology (Deep-Trench 기술을 적용한 Super Junction MOSFET의 Charge Balance 특성에 관한 연구)

  • Choi, Jong-Mun;Huh, Yoon-Young;Cheong, Heon-Seok;Kang, Ey-Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.356-361
    • /
    • 2021
  • Super Junction structure is the proposed structure to minimize the Trade-off phenomenon of power devices. Super Junction can have On-resistance(Ron) characteristics as less as five times than conventional structure. There are process methods that Multi-Epi and Deep-Trench of Super Junction structure. The reason for this is that Deep-Trench process is known to be a relatively difficult manufacturing method because it is easy to form a P-Pillar by burying impurities on top of a silicon substrate through a Deep-Trench process. However, the structure created by the Deep-Trench process has low On-resistance and high breakdown voltage, showing better efficiency. In this paper, we suggested a novel method in the process and designed structure with Charge Balance theory.

Nonlinear Modeling of Super-RENS Disc Systems Using a SCPWL Model (SCPWL 모델을 이용한 Super-RENS 디스크 시스템의 비선형 모델링)

  • Seo, Man-Jung;Jeon, Seok-Hun;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.24-30
    • /
    • 2010
  • The super-resolution near-field structure (super-RENS) disc system is the most promising one for next-generation optical data storage systems to succeed the Blu-ray disc (BD). In this paper, we apply the simplicial canonical piecewise-linear (SCPWL) model to modeling super-RENS read-out signals since reliable and accurate channel modeling is essential for performance analysis and development of equalizers for super-RENS systems. The validity of this model is verified using radio frequency (RF) signal samples obtained from a super-RENS disc, The experiment results on modeling indicate that the SCPWL model can be efficiently utilized for the nonlinear modeling of the super-RENS systems.

Developing a simulator for Super-RENS/ROM disk using finite difference time domain method (Super-ROM/RENS 디스크 구조의 재생신호 해석을 위한 유한차분 시간구역 (FDTD) 방법을 이용한 시뮬레이터 개발)

  • Ahn Duck-Won;You Chun-Yeol
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.32-37
    • /
    • 2005
  • We developed a numerical simulator in order to study the Super-RENS/ROM (Super REsolution Near-Field Structure, Read Only Memory) using 3-dimensional FDTD (finite difference time domain) method. The simulation can be performed by three steps. In the first step, we utilized the vector-diffraction theory to calculate the characteristics of incident laser beam from the object-lens to the surface of the disk. At the second step, we fed the calculated result as an input for the main FDTD simulations on the optical layers in the disk structure. After performed the FDTD simulations, we took near-to-far field transformation for the reflected signal, from the surface of the disk to the detector. Finally, we can get reflected signal at the photo-diode. Using this developed simulator, we were able to study about the reading signal from various disk structures as a function of a laser beam position. We calculated reading signals for various pit sizes for Super-ROM structure, and it is found that the simple optical diffraction theory can not explain the reading mechanism of Super-ROM, and more complicated temperature dependent physics must be involved.

  • PDF

Developing a simulator for Super-RENS/ROM disk using finite difference time domain method (Super-ROM/RENS 디스크 구조의 재생신호 해석을 위한 유한차분시간구역 (FDTD) 방법을 이용한 시뮬레이터 개발)

  • Ahn, Duck-Won;You, Chun-Yeol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • We developed a numerical simulator in order to study the Super-RENS/ROM (Super REsolution Near-Field Structure, Read Only Memory) using 3-dimensional FDTD (finite difference time domain) method. The simulation can be performed by three steps. In the first step, we utilized the vector-diffraction theory to calculate the characteristics of incident laser beam from the object-lens to the surface of the disk. At the second step, we fed the calculated result as an input for the main FDTD simulations on the optical layers in the disk structure. After performed the FDTD simulations, we took near-to-far field transformation for the reflected signal, from the surface of the disk to the detector. Finally, we can get reflected signal at the photo-diode. Using this developed simulator, we were able to study about the reading signal from various disk structures as a function of a laser beam position. We calculated reading signals for various pit sizes for Super-ROM structure, and it is found that the simple optical diffraction theory can not explain the reading mechanism of Super-ROM, and more complicated temperature dependent physics must be involved.

  • PDF

Manufacturing process of micro-nano structure for super hydrophobic surface (초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정)

  • Lim, Dong-Wook;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

Efficient Mobile P2P Structure for Content Search Services (콘텐츠 검색 서비스를 위한 효율적인 이동 P2P 구조)

  • Kwak, Dong-Won;Bok, Kyoung-Soo;Kang, Tae-Ho;Yeo, Myung-Ho;Yoo, Jae-Soo;Joe, Ki-Hung
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.30-44
    • /
    • 2009
  • In this paper, we propose the mobile P2P structure supporting content searches for mobile peers efficiently. The proposed mobile P2P structure is a 3-tier structure which consists of a mobile peer, a mobile super peer, and a stationary super peer to reduce the content search cost of mobile P2P service. For content searches, mobile peer searches content in the communication range and performs hierarchical content searches which is using mobile super peer, stationary super peer for expansion of query region. In order to support hierarchial content searches and the continuity of services according to peer mobilities, peer's join/leave processes are explicitly stored by supporting message structures to the upper layer It is shown through experimental evaluation that the proposed structure improves about 32% contents search performance over the existing 2-tier structure. Since it also reduces the messages transferred to the stationary super peers, it reduced about 25% search loads of them.

Nonlinear Modeling of Super-RENS System Using a Neural Networks (신경망을 이용한 Super-RENS 시스템의 비선형 모델링)

  • Seo, Man-Jung;Im, Sung-Bin;Lee, Jae-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.53-60
    • /
    • 2008
  • Recently, various recording technologies are studied for optical data storage. After standardization of BD (Blue-ray Disc) and HD-DVD (High-Definition Digital Versatile Disc), the industry is looking for a suitable technology for next generation optical data storage. Super-RENS (Super-resolution near field structure) technique, which is capable of compatibility with other systems, is one of next optical data storage. In this paper, we analyze the nonlinearity of Super-RENS read-out signal through the bicoherence test, which uses HOS (Higher-Order Statistics) and apply neural networks for nonlinear modeling. The model structure considered in this paper is the NARX (Nonlinear AutoRegressive eXogenous) model. The experiment results indicate that the read-out signals have nonlinear characteristics. In addition, it verified the possibility that neural networks can be utilized for nonlinear modeling of Super-RENS systems.

3 DOFs bridge-vessel collision model considering with rotation behaviors of the vessel (선박의 회전거동을 고려한 3자유도 충돌모델)

  • Lee, Gye-Hee;Lee, Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.380-385
    • /
    • 2008
  • 3 DOFs model for the collision analysis of a bridge super-structure and a super-structure of the navigating vessels were proposed and analyzed. The collision event between the super-structure of vessel and the super-structure of bridge are different from the normal collision event that collided at sub-structure of bridge. Because of its moment arm, the stability force of vessel could affect to the collision behaviors. To consider this effect, 3 DOFs model including two translation DOFs and one rotational DOF were introduced. The restoration forces of the collision system were considered as nonlinear springs. The equations of motion were derived if form of differential equations and numerically solved by 4th order Runge-Kutta method. The accuracy and the feasibility of this model were verified by the numerical example with parameter of moment arm length.

  • PDF

Low Resistance SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 저저항 SC-SJ(Shielding Connected-Super Junction) 4H-SiC UMOSFET)

  • Kim, Jung-hun;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.756-761
    • /
    • 2019
  • In this paper, we propose SC-SJ(Shielding Connected-Super Junction) UMOSFET structure in which p-pillars of conventional 4H-SiC Super Junction UMOSFET structures are placed under the shielding region of UMOSFET. In the case of the proposed SC-SJ UMOSFET, the p-pillar and the shielding region are coexisted so that no breakdown by the electric field occurs in the oxide film, which enables the doping concentration of the pillar to be increased. As a result, the on-resistance is lowered to improve the static characteristics of the device. Through the Sentaurus TCAD simulation, the static characteristics of proposed structure and conventional structure were compared and analyzed. The SC-SJ UMOSFET achieves a 50% reduction in on-resistance compared to the conventional structure without any change in the breakdown voltage.