• Title/Summary/Keyword: Super alloy

Search Result 146, Processing Time 0.012 seconds

A Study on the Surface Modification of the Super Alloy by Plasma Transferred Arc Overlay Welding Method

  • Kim, Young-Sik;Lim, Chang-Hoon;Hwang, Won-Seok;Choi, Young-Gook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.852-856
    • /
    • 2007
  • The Plasma Transferred Arc(PTA) overlay welding method is lately introduced as one of the most useful surface overlay method of the engine component. In this paper, the overlay welding method on the Nimonic super alloy was established by the PTA overlay welding process using the same super alloy powder. The characteristics of the Co-base and Ni-base super alloy overlay layers were investigated through the metallurgical, abrasive and cavitation erosion test. The abrasive and cavitation characteristics were investigated at room and high temperature.

Galvanic Anode Charactristics of Grounding Cell Design for Corrosion Protection of Pipings (배관 방식용 접지전지 설계를 위한 유전양극의 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 1983
  • The galvanic anodes have three kinds of Zn alloy anode, Al alloy anode and Mg alloy anode, which are widely used in cathodic protection for all metal structures in water or under ground. This paper to be used for designing of the grounding cell has reached the following conclusion as the results of an experimental study on the characteristics of such galvanic anodes for corrosion protection of pipings: 1) Zn alloy anode was the best when the specific resistance of the environment was bellow 1000 $\Omega$.cm, and when above 1000 $\Omega$.cm, Mg alloy anode to be used for designing of the grounding cell was the best. 2) Al alloy anode was better than Mg alloy anode for grounding cell when the specific resistance was bellow 500 $\Omega$.cm, but the Al alloy anode in all the environments reduced the characteristics of galvanic anode to the lower grade than those of Zn alloy anode. 3) Each impressed voltage (E) of the anodes at which drainage current density ($\rho$) begins rapidly increasing is quantitatively presented as follows: \circled1 E sub(Zn)=log (4.9465/$\rho$super(0.0639))+11$\times$10 super(-6)$\rho$super(0.8923i) \circled2 E sub(Al)=log (4.9306/$\rho$super(0.0525))+13$\times$10 super(-6)$\rho$super(0.9314i) \circled3 E sub(Mg)= log (3.7086/$\rho$super(0.0988))+181$\times$10 super(-6)$\rho$super(0.5406i) 4) The empirical equations between the drainage current density (i) and impressed environment are modeled as the following type. logi=g+root(n.E+r)(g,n,r; constants)

  • PDF

Effects of Melt Super-heating on the Shape Modification of ${\beta}-AlFeSi$ Intermetallic compound in AC2B Aluminum Alloy (AC2B 알루미늄합금의 고온용해에 의한 금속간화합물 ${\beta}-AlFeSi$상 형상계량 효과)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 2001
  • Melt super-heating which promotes shape modification of ${\beta}$ intermetallic compounds was conducted to improve mechanical properties of recycled AC2B aluminum alloy. Modification of needle-shape ${\beta}$ intermetallic compounds was effective for the specimens of AC2B aluminum alloys containing 0.85wt.% Fe by melt super-heating, in which the melts had been held at $850^{\circ}C$ or $950^{\circ}C$ for 30 minutes respectively. Owing to the modification of needle-shape of ${\beta}$ intermetallic compounds by melt superheating of the alloy with containing 0.85wt.% Fe to $950^{\circ}C$, increases in elongation and tensile strength were prominent to be more than double and 55% respectively in comparison with the melt heated to $740^{\circ}C$. Moreover, modification of needle-shape ${\beta}$ intermetallic compounds in the alloy containing O.85wt.% Fe by $950^{\circ}C$ melt super-heating led to 48% improvement of the value of impact absorbed energy as compared with the melt heated to $740^{\circ}C$.

  • PDF

A Study on the Abrasive Wear Properties of the PTA Overlay Layers using the Super Alloy Powder (초내열합금분말에 의한 PTA 오버레이부의 연삭 마모 특성 연구)

  • Kim, Young-Sik;Choi, Young-Gook;Lim, Chang-Hoon;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.80-84
    • /
    • 2009
  • The Plasma Transferred Arc (PTA) overlay welding method is lately introduced as one of the most useful surface overlay method of the engine component. In this paper, the overlay welding on the SNCrW heat resisting alloy was conducted by the PTA overlay welding process using the super alloy powder. The characteristics of the overlay layers were investigated through the metallurgical and abrasive test. Experimental results showed that the overlay on the SNCrW heat resisting alloy surface was successfully made without hot cracking. The friction wear characteristics of the Co-base Stellite 6 overlayer were most superior. However the abrasive wear characteristics were most inferior in the Co-base Stellite 6 overlayer.

Effects of Precipitates and Oxide Dispersion on the High-temperature Mechanical Properties of ODS Ni-Based Superalloys

  • Noh, GooWon;Kim, Young Do;Lee, Kee-Ahn;Kim, Hwi-Jun
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • In this study, we investigated the effects of precipitates and oxide dispersoids on the high-temperature mechanical properties of oxide dispersion-strengthened (ODS) Ni-based super alloys. Two ODS Ni-based super alloy rods with different chemical compositions were fabricated by high-energy milling and hot extrusion process at 1150 ℃ to investigate the effects of precipitates on high-temperature mechanical properties. Further, the MA6000N alloy is an improvement over the commercial MA6000 alloy, and the KS6000 alloy has the same chemical composition as the MA6000 alloy. The phase and microstructure of Ni-based super alloys were investigated by X-ray diffraction and scanning electron microscopy. It was found that MC carbide precipitates and oxide dispersoids in the ODS Ni-based super alloys developed in this study may effectively improve high-temperature hardness and creep resistance.

Analysis on Temperature Change of Super Changer for the Reduction of Auto Exhausts Gas (자동차 배출가스 저감을 위한 과급기의 온도변화 해석)

  • Lee, Jong-Ho;Kim, Sung-Won;Yoon, Han-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • Regulations on exhaust emissions for vehicles and ships are reinforced. Therefore, researchers are focus on developing an excellent engine that emits less environmental pollutants and leads to high gas milage. The purpose of this study is to investigate the efficiency of intake super charging system. Super charger is the special device for improving performance of intake system. Futhermore, for reducing exhaust emissions, the examine are performed on the effectiveness of device structures that tow materials for performance improvement. To fulfill the purpose, Super charger materials of aluminum alloy(AL6262) and polycarbonate were selected and then their temperature change of super charger and inhalation efficiency were analyzed by ANSYS program. In addition, it is attempted to apply these results to device development by comparing the results with the real value. As a result, there was less temperature change of super charger in aluminum materials than polycarbonate, and HC and NOx were decreased when the super charger was installed.

A Study on the Characteristics of the Ni base Super Alloy Overlay Layer by Plasma Transferred Arc (PTA) Method (Ni 계 초내열합금의 PTA 오버레이 층 특성에 관한 연구)

  • Kim Young-Sik;Choi Young-Goog;Lee Kwang-Ryeol
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.49-54
    • /
    • 2006
  • The Plasma Transferred Arc (PTA) overlaying method is lately introduced as one of the most useful surface modification method of the engine component. In this paper, the characteristics of the Co-base and Ni-base super alloy overlay layers by PTA method were investigated through the metallurgical, abrasive and cavitation erosion test. Experimental results showed that the abrasive wear resistance of the Co-base Stellite 6 overlayer was the most superior and followed in order of Nimonic 80A, Inconel 625 and Inconel 718. However, the cavitation erosion characteristic of the Stellite 6 overlayer was the most inferior and it was better in order of Inconel 625, Inconel 718 and Nimonic 80A.

SHEAR BOND STRENGTH OF HEAT-CURED DENTURE BASE RESIN TO SURFACE TREATED CO-CR ALLOY WITH DIFFERENT METHODS (코발트-크롬 합금의 표면처리에 따른 열중합형 의치상용 레진과의 전단결합강도)

  • Lee, Sang-Hoon;Hwang, Sun-Hong;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.216-227
    • /
    • 2007
  • Statement of problem: For the long-term success of removable partial dentures, the bonding between metal framework and denture base resin is one of the important factors. To improve bonding between those, macro-mechanical retentive form that is included metal framework design has been generally used. However it has been known that sealing at the interface between metal framework and denture base resin is very weak, because this method uses mechanical bonding. Purpose: Many studies has been made to find a simple method which induces chemical bond, now various bonding system is applied to clinic. In this experiment, shear bond strengths of heat-cured denture base resin to the surface-treated Co-Cr alloy were measured before and after thermocycling. Chemically treated groups with Alloy $Primer^{TM}$, Super-Bond $C&B^{TM}$, and tribochemically treated group with $Rocatec^{TM}$ system were compared to the beadtreated control group. The data were analyzed with two-way ANOVA. Result: 1. Shear bond strength of bead-treated group is highest, and Alloy $Primer^{TM}$ treated group, Super-Bond $C&B^{TM}$ treated group, RocatecTM system treated group were followed. Statistically significant differences were found in each treated group(p<0.05). 2. Surface treatment and thermocycling affected shear bond strength(p<0.05), however there was no interaction between two factors(p>0.05). 3. Shear bond strengths of bead-treated group and Alloy $Primer^{TM}$ treated group showed no statistically significant difference before and after thermocycling(p>0.05), and those of Super-Bond $C&B^{TM}$ treated group and $Rocatec^{TM}$ system treated group showed statistically significant difference after thermocycling(p<0.05).

THE EFFECTS OF SURFACE TREATMENT OF DENIAL NICKEL-CHROMIUM ALLOY ON TENSILE BOND STRENGTH (치과용 니켈-크롬합금에 대한 표면 처리가 인장접착강도에 미치는 영향)

  • Lee, Eun-Suk;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.493-502
    • /
    • 1997
  • This study was conducted to evaluate the tensile bond strength by bonding the dental bracket with Super-bond after treating the surface of dental Nickel-Chromium alloy with sandblasting, sandblasting & tin-plating, respectively, and tin-plating. 10 pieces of Nickel-Chromium alloys with brackets bonded with Super-bond without their surface treatment were sampled as a control group, 20 pieces of Nickel-Chromium alloy brackets bonded with Super-bond after treating them with sandblasting as group I, 20 pieces of Nickel-Chromium alloys tin-plated and bonded with Super-bond after sandblasting as group II, and then 20 pieces of alloys with brackets bonded with Super-bond after tin-plating as group III. The result of those examination and comparison is summarized as follows: 1. Group I showed the mean tensile bond strength of $14.41{\pm}2.24MPa$ which was highest among 4 groups, followed by group III($13.59{\pm}.51MPa$), group II($12.27{\pm}.45MPa$), and control group($10.50{\pm}1.57MPa$), respectively. However, it was shown that there was no statistically significant difference between group I and III, group III and II, and group II and control group(p>0.05). 2. The main failure pattern of those brackets showed that $70\%$ of the control group had an adhesive failure at the bracket-Superbond interface, and $30\%$ at the Nickel-Chromium alloy-Superbond interface, while other groups did the adhesive failure at the bracket-Superbond interface. 3. When examined under SEM, it was shown that adhesives were mostly attached to the surface of the Nickel-Chromium alloy for all groups while a considerable quantity of adhesives were attached to the bracket base. Then, those samples treated only with sandblasting showed the most even and remarkable roughness of their surface.

  • PDF

The Effects of Various Metal Surface Treatments on the Shear Bond Strength between Titanium Denture Base and Relined Resins (타이타니움 의치상에 대한 다양한 금속표면처리제의 적용이 첨상레진과의 결합강도에 미치는 영향)

  • Eun, Jun-Young;Cho, In-ho;Lee, Jong-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to evaluate the effect of various metal surface treatments on the shear bond strength between titanium denture base and relined resins. The surfaces of commercially pure(cp) titanium were sandblasted with $50{\mu}m$ $Al_2O_3$ for 20 seconds and each group was treated with MR $Bond^{(R)}$, Alloy $Primer^{(R)}$, and Super-Bond $C&B^{(R)}$ accordingly. The specimens were completed by application of relining resins. The specimens were stored in room temperature. And the shear bond strength of the specimens were measured with the MTS universal testing $machine^{(R)}$. The results were as follows: 1. In comparison with the relining materials, $Kooliner^{(R)}$ groups showed statistically higher shear bond strength than Tokuyama Rebase $II^{(R)}$ groups(p<0.05). 2. Comparing shear bond strength, according to surface treatment, Super-bond $C&B^{(R)}$ groups showed the highest bond strength and were significantly higher than the other three groups(p<0.05). Alloy $Primer^{(R)}$ groups showed no significant difference with the MR $Bond^{(R)}$ groups, but was significantly higher than the sandblasting-only groups(p<0.05). 3. Comparing surface treatment in each groups, for two types of relining resin, the group which applies $Kooliner^{(R)}$ and Super-bond $C&B^{(R)}$ showed the highest bond strength and showed significant difference compared to the other groups(p<0.05). When using Tokuyama Rebase $II^{(R)}$, Super-bond C&B group showed the highest bond strength, but there were no significant difference compared to the Alloy $Primer^{(R)}$ group. In this limited study, applying $Kooliner^{(R)}$ and Super-Bond $C&B^{(R)}$ after sandblasting is considered to be advantageous for relining of titanium base dentures.