• Title/Summary/Keyword: Super Vertex Mean label

Search Result 1, Processing Time 0.016 seconds

SUPER VERTEX MEAN GRAPHS OF ORDER ≤ 7

  • LOURDUSAMY, A.;GEORGE, SHERRY
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.565-586
    • /
    • 2017
  • In this paper we continue to investigate the Super Vertex Mean behaviour of all graphs up to order 5 and all regular graphs up to order 7. Let G(V,E) be a graph with p vertices and q edges. Let f be an injection from E to the set {1,2,3,${\cdots}$,p+q} that induces for each vertex v the label defined by the rule $f^v(v)=Round\;\left({\frac{{\Sigma}_{e{\in}E_v}\;f(e)}{d(v)}}\right)$, where $E_v$ denotes the set of edges in G that are incident at the vertex v, such that the set of all edge labels and the induced vertex labels is {1,2,3,${\cdots}$,p+q}. Such an injective function f is called a super vertex mean labeling of a graph G and G is called a Super Vertex Mean Graph.