최근에는 슈퍼-픽셀 (super-pixel)은 컴퓨터 발전 응용에 널리 사용되고 있다. 슈퍼 픽셀 알고리즘은 픽셀을 지각적으로 실행이 가능한 영역으로 변환하여 그리드 픽셀의 경직된 특징을 줄일 수 있다. 특히, 슈퍼 픽셀은 깊이 추정, 골격 작업, 바디 라벨링 및 기능 국소화 등에 사용된다. 그러나 이러한 작업을 수행하기 위해 우수한 슈퍼 픽셀 파티션을 생성하는 것은 쉽지 않다. 특히 슈퍼 픽셀은 비합, 지속, 폐쇄, 지각 불변과 같은 형태 측면을 고려할 때보다 의미있는 특징을 만족시키지는 못한다. 본 논문에서는 단순 선형 반복 클러스터링과 퍼지 클러스터링 개념을 결합한 고급 알고리즘을 제안한다. 단순 선형 반복 클러스터링 기술은 이미지 경계, 속도, 메모리 효율이 기존 방법보다 높다. 그것은 형태 측면의 맥락에서 슈퍼 픽셀 형태에 대해 양호하게 작거나 규칙적인 특성을 제안하는 것은 아니다. 퍼지 유사성 측정은 제한된 크기와 이웃을 고려하여 합리적인 그래프를 제공한다. 보다 작고 규칙적인 픽셀을 얻으며 부분적으로 관련된 특징을 추출 할 수 있다. 시뮬레이션은 퍼지 유사성 기반 슈퍼 픽셀 생성은 사람의 이미지를 분해하는 방식으로 자연적 특징을 대표적으로 나타낸다.
본 논문에서는 함정전투체계의 EOTS나 IRST에서 획득한 영상을 초고해상도 영상으로 복원한다. 저해상도에서 초고해상도의 영상을 생성하는 생성 모델과 이를 판별하는 판별 모델로 구성된 생성적 적대 신경망을 이용하고, 다양한 학습 파라미터의 변화를 통한 최적의 값을 제안한다. 실험에 사용되는 학습 파라미터는 crop size와 sub-pixel layer depth, 학습 이미지 종류로 구성되며, 평가는 일반적인 영상 품질 평가 지표에 추가적으로 특징점 추출 알고리즘을 함께 사용하였다. 그 결과, Crop size가 클수록, Sub-pixel layer depth가 깊을수록, 고해상도의 학습이미지를 사용할수록 더 좋은 품질의 영상을 생성한다.
본 논문은 DNN(Deep Neural Network)와 슈퍼픽셀을 이용한 실내 공간 인식 알고리즘을 제안한다. 영상으로부터 실내 공간 인식을 위해 우선 영상 분할을 위한 세그멘테이션 프로세스가 필요하다. 이를 위해 본 논문에서는 적당한 크기로 나눌 수 있는 슈퍼 픽셀 알고리즘을 이용해 세그멘테이션을 수행한다. 각 세그먼트를 인식하기 위해 세그먼트마다 제안하는 방법을 이용하여 특징을 추출한다. 추출된 특징들을 DNN을 이용하여 학습하고, 학습으로부터 추출된 DNN모델을 이용하여 각 세그먼트를 인식한다. 실험 결과를 통해 제안하는 방법과 기존의 알고리즘과의 성능 비교 분석을 한다.
Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.
본 논문에서는 연속된 프레임을 갖는 영상의 프레임간 움직임 추정 기법을 응용하여 고해상도 영상을 생성하는 초해상도 기법을 제안한다. 단일 영상을 이용한 초해상도 기법의 경우 영상에서의 고주파 대역을 찾기 위해 확률 및 이산 웨이블릿 변환(discrete wavelet transform: DWT) 기반 등 다양한 방법이 제시되었으나, 연산에 사용할 수 있는 정보가 제한적이라는 문제가 존재한다. 이러한 문제를 해결하기 위해 연속된 프레임을 이용한 초해상도 기법이 다양하게 제안되었다. 연속 프레임 기반 초해상도 기법의 핵심인 입력 저해상도 영상 간 정합(registration)의 정확도는 초해상도 기법의 결과에 큰 영향을 갖는다. 본 논문에서는 영상 간 정합의 정확도를 높이기 위하여 6-tap FIR(finite impulse response) 필터를 부화소(sub-pixel) 단위의 정합에 사용한다. 실험을 통하여 제안하는 기법의 결과영상이 기존의 최단입점(nearest neighborhood), 이중선형(bi-linear), 고등차수(bi-cubic) 보간법 보다는 우수하고 DWT 기반의 초해상도 기법과는 비슷한 성능을 가진다는 것을 확인할 수 있었다.
In this paper, we propose an efficient WBC 14-Diff classification which performs using the WBC-ResNet-152, a type of CNN model. The main point of view is to use Super-pixel for the segmentation of the image of WBC, and to use ResNet for the classification of WBC. A total of 136,164 blood image samples (224x224) were grouped for image segmentation, training, training verification, and final test performance analysis. Image segmentation using super-pixels have different number of images for each classes, so weighted average was applied and therefore image segmentation error was low at 7.23%. Using the training data-set for training 50 times, and using soft-max classifier, TPR average of 80.3% for the training set of 8,827 images was achieved. Based on this, using verification data-set of 21,437 images, 14-Diff classification TPR average of normal WBCs were at 93.4% and TPR average of abnormal WBCs were at 83.3%. The result and methodology of this research demonstrates the usefulness of artificial intelligence technology in the blood cell image classification field. WBC-ResNet-152 based morphology approach is shown to be meaningful and worthwhile method. And based on stored medical data, in-depth diagnosis and early detection of curable diseases is expected to improve the quality of treatment.
This paper presents an adaptive image interpolation method using a pixel-based neighbor embedding which is modified from the patch-based neighbor embedding of contemporary super resolution algorithms. Conventional interpolation methods for high resolution detect at least 16-directional edges in order to remove zig-zaging effects and selectively choose the interpolation strategy according to the direction and value of edge. Thus, they require much computation and high complexity. In order to develop a simple interpolation method preserving edge's directional shape, the proposed algorithm adopts the simplest Haar wavelet and suggests a new pixel-based embedding scheme. First, the low-quality image but high resolution, magnified into 1 octave above, is acquired using an adaptive 8-directional interpolation based on the high frequency coefficients of the wavelet transform. Thereafter, the pixel embedding process updates a high resolution pixel of the magnified image with the weighted sum of the best matched pixel value, which is searched at its low resolution image. As the results, the proposed scheme is simple and removes zig-zaging effects without any additional process.
본 논문에서는 움직임 벡터의 정규화 및 윤곽선(edge)의 패턴 분석을 이용한 새로운 복수영상 기반의 초해상도(super resolution) 영상 생성 기법을 제안한다. 기존의 복수영상 기반의 초해상도 기법의 경우 입력 동영상을 구성하는 각 영상 간 부화소(sub-pixel) 단위의 움직임과 병진이동(global translation)만이 발생한다고 가정하여 기법의 적용이 제한적이다. 또한 이러한 제한에 강한 단일영상 기반의 초해상도 영상 생성 기법의 경우 보간 시 사용할 수 있는 정보량이 제한적이라는 단점이 있다. 본 논문에서는 기존 기법의 단점인 부화소 단위의 움직임에 대한 제한을 움직임 벡터의 정규화 기법을 통해 해결하고, 윤곽선 패턴 분석을 기반으로 한 2*2 블록 단위의 움직임 추정을 통해 병진이동에 대한 제한을 해결하였다. 또한 실험을 통하여 제안하는 기법이 기존의 이중선형(bi-linear)보간법, 단일영상과 복수영상 기반 초해상도 기법보다 우수하다는 것을 확인하였다.
본 논문은 높은 품질 SR 이미지를 획득하기 위해 국소 그라디언트를 기반으로 적응형 보간법을 이용하는 SR 방법을 제공한다. 이 방법에서, 내삽 화소와 인접하는 유효한 화소 사이에 거리는 국소 그라디언트 특징을 이용하여 고려되며, 보간 계수는 LR 이미지의 국소 그라디언트를 고려한다. 픽셀의 국소 그라디언트는 더 작을수록, 그리고 메디안 필터는 보간된 HR 이미지의 블러링과 노이즈를 감소시키기 위해 적용된다. 실험 결과는 특히 이미지의 에지 부분에서, 다른 방법과 비교하여 제안된 방법의 유효성을 보여준다.
본 논문은 채널 강조(Channel Attentin)와 공간 강조(Spatial Attention) 방법을 결합한 딥 러닝 기반의 초해상도 방법을 제안하였다. 초해상도 과정에서 질감, 특징과 같은 주변 픽셀의 변화량이 큰 고주파 성분의 복원이 중요하다. 채널 강조와 공간 강조를 결합한 특징 강조를 이용한 초해상도 방법을 제안하였다. 기존의 CNN(Convolutional Neural Network) 기반의 초해상도 방법은 깊은 네트워크의 학습이 어려우며, 고주파 성분의 강조가 부족하여 윤곽선이 흐려지거나 왜곡이 발생한다. 문제를 해결하기 위해 스킵-커넥션(Skip Connection)을 적용한 채널 강조와 공간 강조를 결합한 강조 블록과 잔차 블록(Residual Block)을 사용하였다. 방법으로 추출한 강조된 특징 맵을 부-픽셀 컨볼루션(Sub-pixel Convolution)을 통해 특징맵을 확장하여 초해상도를 진행하였다. 이를 통해 기존의 SRCNN과 비교하여 약 PSNR는 5%, SSIM은 3% 향상되었으며 VDSR과 비교를 통해 약 PSNR는 2%, SSIM은 1% 향상된 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.