• Title/Summary/Keyword: Super Hydrophilic

Search Result 31, Processing Time 0.024 seconds

Study on the Characteristics of the Absorbency Silicone by Super Absorbent Polymers (고흡수성 수지를 이용한 흡수성 실리콘의 특성 연구)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Silicone resin has no water-absorbing function because it is a strong hydrophobic polymer. However, addition of super absorbent polymer gives much better absorbency than that of conventional silicone resin. In this study, we developed novel silicone materials with water-absorbing function by choosing three types of amorphous acrylic super absorbent polymers with different particle sizes, determining the mixing ratio of the three polymers and applying the mixtures into two-component type silicone material for medical purpose. The change in the mechanical properties such as tensile strength, tear strength, compressive strength and hardness was investigated by varying the particle size and content ratio of the added super absorbent polymers while preparing the silicone resins. The absorbency of the silicone resins was measured over time. Additionally, the particle shape of the super absorbent polymers as well as the distribution within the silicone resin was observed using an optical microscope.

Fabrication of super hydrophilic TiO2 thin film by a liquid phase deposition (액상증착법에 의한 초친수 TiO2 박막 제조)

  • Jung, Hyun-Ho;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.227-231
    • /
    • 2010
  • Super hydrophilic $TiO_2$ thin films with photocatalytic property were successfully fabricated on a glass substrate by liquid phase deposition (LPD). The $TiO_2$ thin film formed nano particles on a surface at $70^{\circ}C$. As an immersion time in $TiF_4$ solution increased, the thickness of thin films gradually increased. $TiO_2$ thin film showed a water contact angel of below ca. $5^{\circ}$ and the transmittance of ca. 75~90 % in visible range. In addition, $TiO_2$ thin film showed the photocatalytic property to decompose methyl orange solution by the illumination of UV light. The surface morphologies, optical properties and contact angel of prepared thin films with a different immersion time were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

Water repellency of glass surface coated with fluorosilane coating solutions containing nanosilica (나노실리카를 함유한 불소실란으로 코팅된 유리 표면의 발수 특성)

  • Lee, Soo;Kim, Keun Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.531-540
    • /
    • 2019
  • Hydrophilic and hydrophobic nanosilica and tetraethyl orthosilicate (TEOS) as a coupling agent was used to form a coarse spike structure as well as an excellent reactive hydroxyl groups on the glass surface. Then, a second treatment was carried out using a trichloro-(1H,1H,2H,2H)perfluorooctylsilane(TPFOS) solution for ultimate water repellent glass surface formation. The formation of hydrophobic coating layer on glass surface using silica aerosol, which is hydrophobic nanosilica, was not able to form a durable hydrophobic coating layer due to the absence of reactive -OH groups on the surface of nanosilica. On the other hand, a glass surface was first coated with a coating liquid prepared with hydrophilic hydroxyl group-containing nanosilica and hydrolyzed TEOS, and then coated with a TPFOS solution to introduce a hydrophobic surface on glass having a water contact angle of $150^{\circ}$ or more. The sliding angle of the coated glass was less than $1^{\circ}$, which meant the surface had a super water-repellent property. In addition, as the content of hydrophilic nanosilica increased, the optical transmittance decreased and the optical transmittance also decreased after 2nd coating with the TPFOS solution. The super-hydrophobic property of the coated glass was remained up to 50 times of rubbing durability test, but only hydrophobic property was shown after 200 times of rubbing durability test. Conclusively, the optimal coating conditions was double 1st coatings with the HP3 coating solution having a hydrophilic nanosilica content of 0.3 g, and subsequent 2nd coating with the TPFOS solution. It is believed that the coating solution thus prepared can be used as a surface treatment agent for solar cells where light transmittance is also important.

Trend on Development of Low Molecular Weight Organosilicone Surfactants (Part 1) (저분자 유기실리콘 계면활성제의 개발 동향 (제1보))

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.66-82
    • /
    • 2017
  • Organosilicone-based surfactants consist of hydrophobic organosilicone groups coupled to hydrophilic polar groups. Organosilicone surfactants have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability, resulted from the unique properties of organosilicone. Especially, trisiloxane surfactants, having low molecular weight organosilicone as hydrophobe, exhibit low surface tension and excellent wettability and spreadability, leading to their applications as super wetter/super spreader, but have the disadvantage of vulnerability to hydrolysis. A variety of trisiloxane surfactant structures are required to provide the functional improvement and the defect resolution for reflecting the necessities in the various applications. This review covers the synthetic schemes of reactive trisiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive trisiloxanes to hydrophilic groups, and the synthetic schemes of the main trisiloxane surfactants including polyether-, carbohydrate-, gemini-, bolaform-, double trisiloxane-type surfactants.

Trend on Development of Low Molecular Weight Organosilicone Surfactants (Part II) (저분자 유기실리콘 계면활성제의 개발 동향 (제2보))

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.461-477
    • /
    • 2017
  • Organosilicone-based surfactants, consisting of hydrophobic organosilicone groups coupled to hydrophilic polar groups, have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability, resulted from the unique properties of organosilicone. Especially, organosiloxane surfactants, having low molecular weight siloxane as hydrophobe, exhibit low surface tension and excellent wettability and spreadability, leading to their applications as super wetter/super spreader, but have the disadvantage of vulnerability to hydrolysis. A variety of low molecular weight siloxane surfactant structures are required to provide the functional improvement and the defect resolution for reflecting the necessities in the various applications. This review includes the synthetic schemes of reactive tetrasiloxanes and disiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive tetrasiloxanes or disiloxanes to hydrophilic groups, and the main synthetic schemes of the tetra- and di-siloxane surfactants having polyether-, carbohydrate-, gemini-, bola-type surfactant structures.

Estimation of energy self-sufficiency in municipal wastewater treatment plant using simulated solar photovoltaic performance (태양광발전시스템 성능 시뮬레이션을 통한 하수처리장 에너지자립율 산정)

  • An, Young-Sub;Kim, Sung-Tae;Chae, Kyu-Jung;Kang, Ji-Hoon;Yang, Hee-Jung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.291-296
    • /
    • 2011
  • This paper presents energy self-sufficiency simulated in municipal wastewater treatment plants (WWTPs) by adopting solar energy production systems that vary with installation conditions. Relative to the national average energy consumption in WWTPs, the employment of 100 kW photovoltaics (PVs) was simulated to achieve 2.75% of energy self-sufficiency. The simulated results suggested that the installation of PVs toward South or South west would produce the highest energy self-sufficiency in WWTPs. When super-hydrophilic coating was employed in the conventional PVs, 5% of additional solar energy production was achievable as compared to uncoated conventional PVs. When 100 kW of PVs were installed in a future test-bed site, Kihyeung Respida located in Yougin, Sourth Korea, the energy self-sufficiency by solar energy was simulated to be 1.77% (2010). The simulated energy self-sufficiency by azimuth(direction) will be useful reference for practitioners in designing the solar PV systems in the WWTPs.

  • PDF

Interfacial Behavior of Water Droplet on Micro-Nano Structured Surfaces (마이크로-나노 구조가 있는 표면에서의 액적 계면 거동 현상에 대한 연구)

  • Kwak, Ho Jae;Yu, Dong In;Kim, Moo Hwan;Park, Hyun Sun;Moriyama, Kiyofumi;Ahn, Ho Sun;Kim, Dong Eok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.449-453
    • /
    • 2015
  • Recently, surfaces with micro and nano structures are the focus of various research and engineering fields to enhance wetting characteristics of the surfaces. Hydrophilic surfaces with hierarchical structures are generally characterized by the interfacial behavior of water droplets. In this study, the interfacial behavior of water droplets is experimentally investigated considering the scale of structures. Using the dry etching and conventional lithography method, quantitative hierarchical structured surfaces are developed. The behavior of the liquid-vapor interface on the test sections is visualized using an automatic goniometer and a high-speed camera. On the basis of the visualized data, the interfacial behavior of water droplets is intensively investigated according to surface geometrical characteristics.

Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities (팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화)

  • Young-Sun Kim;Tae-Wooung Kim;Yun-Seob Kim;Yang-Ho Na;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.

Properties Characterization of the Hydrophilic Inorganic Film as Function of Coating Thickness (코팅 두께에 따른 친수성 무기 필름의 특성 분석)

  • Joung, Yeunho;Choi, Won Seok;Shin, Yongtak;Lee, Minji;Kim, Heekon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.425-428
    • /
    • 2013
  • In this paper, we present a novel hydrophilic coating material (Wellture Finetech, Korea) which can be utilized as a coating layer for anti-contamination for electrical and electronic system. The coating material was deposited on 4 inch silicon wafer with several different film thickness. The film thickness was controlled by spin coating speed. After curing of the film, we have scratched by permanent marker to check self-cleaning property of the film. Also we have executed several mechanical tests of the films. As the spin coating speed is increased, the film thickness was thinned from 230 nm to 125 nm. Contact angle of the film was lowered from $30^{\circ}$ to $12^{\circ}$ as the spin coating speed is increased from 700 to 2,500 rpm. On permanent marker scratched film surface coated at 1,000 rpm, we have poured regular city water to investigate self cleaning property of the film. The scratches were gradually separated from the film surface due to super-hydrophilicity of the film. Hardness of spin coated film was 9H measured by ASTM D3363 method. and adhesion of all film was 5B tested by ASTM D3359 method. Also, to get exact hardness value of the film, we have utilized a nano-indenter. As spin speed is increased, the hardness of film was increased from 3 GPa to 5 GPa.