• 제목/요약/키워드: Sunroof

검색결과 40건 처리시간 0.024초

선루프 모터 과열 방지를 위한 데이터 기반 열 차폐 알고리즘 개발 (Development of Data-driven Thermal Protection Algorithm for Protecting Overheating of Motor in the Sunroof System)

  • 김현희;박성우;이경창;황용연
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.223-230
    • /
    • 2016
  • This paper presents data-driven thermal protection algorithm for preventing overheating of automotive sunroof motor. When a sunroof motor operates abnormally, its coil is overheated and it is failed. Besides, drivers and passengers are damaged. Hence, the sunroof motor observes its temperature and will be stoped when its temperature reach a predefined level. In order to implement low-cost thermal protection function, we drew a knowledge-based temperature increasing and decreasing curve from the result of experimental test. And then, we implemented data-driven thermal protection algorithm which prevents motor's On/Off operation according to motor operating voltage and motor speed. Finally, we implemented experimental test bed and evaluated its feasibility.

PAM-FLOW를 이용한 단순차량 모델의 썬루프 버페팅 소음 해석 (Sunroof Buffeting Simulation of a Simplified Car Model using PAM-FLOW)

  • 이동국;박일규;임종윤
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.198-204
    • /
    • 2014
  • 이 연구에서는 자동차의 썬루프 버페팅 소음을 해석하기 위해 전산유체역학을 적용한 벤치마크 결과를 제시한다. 현대자동차의 HAWT라 불리는 단순 차량모델에서 열린 썬루프 위로의 유동해석을 통해 버페팅 현상과 그 소음 수준을 모사하였으며, 해석에 사용된 소프트웨어는 ESI Group의 PAM-FLOW이다. 해석결과는 풍동에서의 시험결과와 비교되었으며, 비교적 좋은 상관관계를 얻을 수 있었다. 전산유체해석을 통해 버페팅 소음을 예측함으로써 자동차의 썬루프 설계와 개발에 매우 유용할 것으로 기대된다.

SVM 알고리즘을 활용한 선루프 실러도포 공정 품질검사 시스템 구축 (The Construction of Quality Inspection System for Sunroof Sealer Application Process Using SVM Algorithm)

  • 양희종;장길상
    • 대한안전경영과학회지
    • /
    • 제23권3호
    • /
    • pp.83-88
    • /
    • 2021
  • Recently, due to the aging of workers and the weakening of the labor base in the automobile industry, research on quality inspection methods through ICT(Information and Communication Technology) convergence is being actively conducted. A lot of research has already been done on the development of an automated system for quality inspection in the manufacturing process using image processing. However, there is a limit to detecting defects occurring in the automotive sunroof sealer application process, which is the subject of this study, only by image processing using a general camera. To solve this problem, this paper proposes a system construction method that collects image information using a infrared thermal imaging camera for the sunroof sealer application process and detects possible product defects based on the SVM(Support Vector Machine) algorithm. The proposed system construction method was actually tested and applied to auto parts makers equipped with the sunroof sealer application process, and as a result, the superiority, reliability, and field applicability of the proposed method were proven.

차체 기밀특성이 선루프 성능에 미치는 영향 연구 (Study of Effects of Body Leakage on Performance of a Sunroof)

  • 이영림
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.201-209
    • /
    • 2001
  • Some passenger cars with sunroofs open at tilted positions experience reverse flows into cabin rooms and wind noises much louder compared to other cars. In this study, flows around open sunroofs are numerically studied with the variations of body leakage. The effects of body leakage on ventilation and wind noise of a sun roof are examined, in particular. Furthermore, flow visualization, pressure, and noise measured from wind tunnel and road tests are presented. The results show that too small body leakage results in poor performance of ventilation and generates high wind noise around a sunroof. It is therefore very important to secure an adequate body leakage from the early design stage to achieve better performance of a sunroof as well as passengers' comfort related to HVAC(Heating, Ventilation, and Airconditioning).

  • PDF

건설기계 Cabin Sunroof 형상비드 배치에 따른 스프링백 개선 (Spring-back Improvement According to the Shape Bead Arrangement of Cabin Sunroof in Construction Equipment)

  • 배기현
    • 소성∙가공
    • /
    • 제30권2호
    • /
    • pp.69-73
    • /
    • 2021
  • This paper addresses the product shape modification for spring-back reduction in the sheet metal forming process of the cabin sunroof which is applied to the construction equipment. Initially, the anisotropic material properties are measured in order to calculate the degree of spring-back by the numerical simulation of the sheet metal forming process. To reduce the spring-back of the stamped part, several design modifications are suggested according to the geometrical bead arrangement on the planar region. The degrees of spring-back are confirmed for various product designs with different use of the geometrical bead. Finally, the spring-back improvement was validated by manufacturing the tryout product with the modified die set for the optimized product shape.

조명의 변화가 심한 환경에서 자동차 부품 유무 비전검사 방법 (Auto Parts Visual Inspection in Severe Changes in the Lighting Environment)

  • 김기석;박요한;박종섭;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1109-1114
    • /
    • 2015
  • This paper presents an improved learning-based visual inspection method for auto parts inspection in severe lighting changes. Automobile sunroof frames are produced automatically by robots in most production lines. In the sunroof frame manufacturing process, there is a quality problem with some parts such as volts are missed. Instead of manual sampling inspection using some mechanical jig instruments, a learning-based machine vision system was proposed in the previous research[1]. But, in applying the actual sunroof frame production process, the inspection accuracy of the proposed vision system is much lowered because of severe illumination changes. In order to overcome this capricious environment, some selective feature vectors and cascade classifiers are used for each auto parts. And we are able to improve the inspection accuracy through the re-learning concept for the misclassified data. The effectiveness of the proposed visual inspection method is verified through sufficient experiments in a real sunroof production line.

SVM 학습 알고리즘을 이용한 자동차 썬루프의 부품 유무 비전검사 시스템 (A Learning-based Visual Inspection System for Part Verification in a Panorama Sunroof Assembly Line using the SVM Algorithm)

  • 김기석;이삭;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1099-1104
    • /
    • 2013
  • This paper presents a learning-based visual inspection method that addresses the need for an improved adaptability of a visual inspection system for parts verification in panorama sunroof assembly lines. It is essential to ensure that the many parts required (bolts and nuts, etc.) are properly installed in the PLC sunroof manufacturing process. Instead of human inspectors, a visual inspection system can automatically perform parts verification tasks to assure that parts are properly installed while rejecting any that are improperly assembled. The proposed visual inspection method is able to adapt to changing inspection tasks and environmental conditions through an efficient learning process. The proposed system consists of two major modules: learning mode and test mode. The SVM (Support Vector Machine) learning algorithm is employed to implement part learning and verification. The proposed method is very robust for changing environmental conditions, and various experimental results show the effectiveness of the proposed method.

STAR-CCM+를 이용한 썬루프 버페팅 유동 소음 해석 (Numerical Analysis of Sunroof Buffeting using STAR-CCM+)

  • 사티쉬 본투;프레드 멘돈카;김귀연;백영렬
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.213-218
    • /
    • 2014
  • 썬루프 버페팅 소음의 고유특성을 의미하는 속도에 따른 소음강도의 증-감쇠 현상을 살펴보고자, HSM(Hyundai simplified model) 형상에 대해서 유동소음 해석 프로그램인 STAR-CCM+을 통하여 전체 차속 범위에 걸쳐 시험과 비교 검토하였다. 차량 내부의 재질에 따른 압축성 효과 및 감쇠효과는 인공 압축성과 감쇠 보정 기법인 FRET(frequency response test)를 이용하였다. 시뮬레이션 결과는 특정 속도에서 나타나는 소음 강도의 증-감쇠 시험결과를 매우 잘 예측하였으며 최대 SPL 수치도 정확히 예측하였다. 이는 썬루프 개방에 의해 발생하는 전단면에서의 유동 박리 주파수를 유동 소음 해석인 STAR-CCM+가 전 차속에 걸쳐서 매우 잘 예측하고 있음을 나타낸다.

CAA++를 이용한 HSM에 대한 유동과 유동소음 해석 (Flow and Flow Noise Analysis of HSM by Using CAA++)

  • 김영남;채준희
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.205-212
    • /
    • 2014
  • 이 연구에서 현대자동차의 단순실험모델(HSM)에 대한 썬루프 버페팅에 대한 수치해석이 수행되었다. 검증을 위하여 HSM 목부위의 경계층에 대한 속도분포 해석결과를 실험결과와 비교하였다. 썬루프 해석은 두 단계로 이루어졌다. 첫 번째로 난류 RANS 모델을 이용하여 정상상태 해석이 수행되었으며, 해석결과는 CAA++의 입력값으로 사용된다. 두 번째 단계는 유동속도에 대한 1차 최대 압력피크와 버페팅 주파수 해석을 위한 비정상상태 해석이 CAA++에서 이루어졌다. 주파수와 음향압력의 수치해석 결과는 타당한 물리적 현상을 보여주고 있으며, 현대 자동차의 실험결과와 잘 일치하는 결과를 보여주었다.

주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구 (Study of Pre-ventilation Effects on the Cabin Thermal Load)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.