• Title/Summary/Keyword: Sun Pipe

Search Result 236, Processing Time 0.021 seconds

Development of Hybrid Device for Photovoltaic Power Generation and Heating (복합식 태양광 발전 및 난방장치 개발)

  • Lee, Dong Il;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.907-914
    • /
    • 2014
  • The objective of this study was to increase the generating efficiency of concentrated photovoltaics (CPV) by using hybrid solar tracking. Further, the proposed system was demonstrated to have the ability to extract thermal energy from a concentrated photovoltaic system by using thermal absorbers containing heat pipe, which could then be used for a heating system or hot-water supply. The average electrical efficiency was 16 during the day, and the average thermal efficiency was 62. Therefore, this system demonstrated a total efficiency (electrical thermal) of 78. All the processes, i.e., tracking of the sun, calculation of the sun's position, reinstatement of the heating device toward the east for tracking on the next day, and system shutdown, were programmed using Simulink. A parametric analysis of the heat pipe, concentration ratio, and inlet velocity was also performed in terms of the operating temperature of the CPV and the outlet temperature. The simulation and experimental results for the thermal absorber were found to be in good agreement.

A Study on the Pressure Drops of T-Branch Pipes (분기배관의 압력강하에 관한 연구)

  • Nam, Jun-Seok;Baek, Chang-Sun;Kwon, Soon-Kwan;Kim, Dong-Hyun;Min, Kyung-Tak;Kim, Byoung-Gon;Lee, Sung-Ho
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.272-277
    • /
    • 2008
  • This study is performed for propose that exactly equivalent length of TBP in the applied at water-based fire protection system. For predict the measuring position of equivalent length, we determined the measuring position using the FVM about pressure drop of TBP. For the reckon of the exact about measured value we compared with the result of FVM and we knew the similar value each other. Using the results we proposed the friction loss measuring position that inlet of main dirction is 20 times of appellation diameter in main pipe, outlet of main dirction is 10 times of appellation diameter in main pipe and outlet of branched direction is 20 times of appellation diameter.

FEM Analysis on the Damage for the Cable of Cabled-suspension Bridges by Fire (화재에 의한 사장교 케이블의 유한요소 해석)

  • Song, Young-Sun;Lee, Byung-Sik;Kim, Hyeong-Joo;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2008
  • Recently, cabled-suspension bridges and suspension bridge have been increasingly built in korea. But such structures were often damaged by fire due to car collison. In this study, the cabled-suspension bridges constructed under the kind of the project of national road aggrandizement are modeled using Solid Works 2007. The COSMOS FloWorks 2007 software are used for Heat Transfer Analysis and Thermal Stress Analysis. The safety of wire, HDPE pipe and stainless steel pipe are investigated. The major variables for the analysis are the temperature of the heat source, the distance between the fire-proof bulk head and the heat source, wind velocity, and the height of the end of Stainless steel pipe.

Experimental Study on Performance Characteristics of High Speed Air Valve for Water Works (급수용 급속공기밸브의 성능특성에 관한 실험적 연구)

  • Lee, Sun Kon;Kaong, Sae Ho;Yang, Cheol Soo;Woo, Chang Ki
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2014
  • When the fluid energy convert into kinetic energy due to water hammer, the propagation velocity of pressure wave appear. The propagation velocity of pressure wave(1050 m/s) of very fast could be damage to the pipeline system. If the occurrence of water hammer is due to down-pressure, the faster the air exhaust or supply device is needed. it is high Speed Air Valve. In this paper, Each 3.12, 3.13, 3.72, $3.74kg/cm^2$ pipeline pressure were setting, and then executed pressure rapid drop for obtaining a high Speed Air Valve Operating time and pressure change data. the result was that pipe line pressure stabilization time were each 0.98, 1, 1.22, 1.25 sec. In other words, that pressure drop experimental results pipe line pressure was equal to atmospheric pressure without negative pressure After about one second. The study result would be useful to pipe line system stability design because this data could be foresee pressure stabilization time.

An Experimental Study on Hydration Heat Control in The Mass Concrete Using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프(OCHP)를 이용한 매스콘크리트의 수화열 제어에 관한 실험적 연구)

  • Beak, Dong-Il;Kim, Myung-Sik;Lee, Moon-Sik;Kim, Kang-Min;Yum, Chi-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.409-412
    • /
    • 2006
  • In process of reinforced concrete(RC) box structure, the heat of hydration may cause serious thermal cracking problems. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control in mass concrete using the OCHP(Oscillating Capillary tube Heat Pipe). Recently OCHP is drawn special attention from these points of low cost as well as short construction schedule for the manufacturing of heat exchanger, flexibility, simplification and high performance. There were three RC box molds$(1.2{\times}1.2{\times}1.2m)$ which shows a difference as compared with each other. One was not equipped with OCHP. While others were equipped with OCHP and these were cooled with air natural convection and spraying water respectively. The OCHP was composed of copper pipe with 12 turns(O.D : 4mm, I.D : 2.8mm). The working fluid was R-22 and its charging ratio was 30(Vol. %). In order to analyze the distribution of temperature and index figure of thermal crack in sequential placement of mass concrete, we used HYCON of computer program. As a result of the experiment, the peak temperature decreased about $15.6\sim23.4^{\circ}C$ than the general specimen and the probability of thermal crack generated in mass concrete decreased up to 0%.

  • PDF

A Study on Field Applications of Hydration Heat Control in the Mass Concrete Using Oscillating Capillary Tube Heat Pipe (OCHP를 이용한 매스콘크리트 수화열 제어의 현장적용에 관한 연구)

  • Yum, Chi-Sun;Bae, Won-Mahn;Kim, Myung-Sik;Beak, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.413-416
    • /
    • 2006
  • In process of the mass concrete structure, the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control of mass concrete using the Oscillating Capillary tube Heat Pipe(OCHP). There were the several RC box molds which shows a difference as compared with each other. One was not equipped with OCHP. The others were equipped with OCHP. All of them were cooled with natural air convection. The OCHP was composed of copper pipe with 11 turns(outer diameter : 4mm, inner diameter : 2.8mm) and heat type was non-looped type. The working fluid was R-22 and its charging ratio was 40% by volume. The core of the concrete temperature was approximately $55^{\circ}C$ in the winter without OCHP. But the concrete temperature with OCHP was reduced its difference in temperature with the outdoor temperature to $12^{\circ}C$. Finally we saw the index figure of the thermal crack of the structures were varied from 0.75 to 1.47.

  • PDF

An Application of Overlap Avoidance to Augment the Production Data in Pipe Installation Drawings (배관설치도 내 생산정보 증강을 위한 겹침 회피 알고리즘의 적용)

  • Hwang, InHyuck;Ruy, WonSun;Park, InHa;Park, JungSeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.428-434
    • /
    • 2016
  • A lot of drawings for pipe construction and installation are needed to construct plant process system on the offshore plant structures. Depending on their scale or complexity, the required number of drawings related pipes sometimes amounts to several hundreds of thousands. Most major shipyards, therefore, have their own system which can automatically depict pipes’ geometric, manufacturing, and BOM(Bill of Material) information on the drawings. However, as the complexity and absolute quantity in the isometric region on the drawings is increased, the information extraction from the customized DB and positioning at the typical locations does not get to be enough to avoid the overlap between geometric contours, labels, and symbols. For this reason, the novel methods to arrange additional annotations without overlaps are presented in the paper. This approach is expected to increase the readability and legibility of the drawing and prevent the human error, and finally decrease the time-consuming and tedious jobs which are unnecessarily required to designers.

A study on characteristics and internal exposure evaluation of radioactive aerosols during pipe cutting in decommissioning of nuclear power plant

  • Kim, Sun Il;Lee, Hak Yun;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1088-1098
    • /
    • 2018
  • Kori unit #1, which is the first commercial nuclear power plant in Korea, was permanently shutdown in June 2017, and it is about to be decommissioned. Currently in Korea, researches on the decommissioning technology are actively conducted, but there are few researches on workers internal exposure to radioactive aerosol that is generated in the process of decommissioning nuclear power plants. As a result, the over-exposure of decommissioning workers is feared, and the optimal working time needs to be revised in consideration of radioactive aerosol. This study investigated the annual exposure limits of various countries, which can be used as an indicator in evaluating workers' internal exposure to radioactive aerosol during pipe cutting in the process of decommissioning nuclear power plants, and the growth and dynamics of aerosol. Also, to evaluate it, the authors compared/analyzed the cases of aerosol generated when activated pipes are cut in the process of nuclear power plants and the codes for evaluating internal exposure. The evaluation codes and analyzed data conform to ALARA, and they are believed to be used as an important indicator in deriving an optimal working time that does not excess the annual exposure limit.

A Study on the Properties of Nitrogen Purging in Liquefied Hydrogen Vent Pipes (액화수소 벤트 배관의 질소 퍼지에 대한 적정성 연구)

  • Myoung Sun Wu;Chang Jun Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.14-19
    • /
    • 2024
  • Hydrogen is one of the most popular eco-friendly energy sources for reducing global warming. To use hydrogen as a conventional fuel, liquid hydrogen plants should introduce waste hydrogen treatment processes. A major safety issue of liquid hydrogen plants is choosing the most suitable purge gas to use in case of an accident. A purge gas prevents the formation of explosive mixed gases in the vent header. In general, nitrogen is the main purge gas used in chemical plants. Nitrogen has a freezing point of -210℃, which is higher than the boiling point of hydrogen. Helium, with a freezing point lower than hydrogen, is instead recommended as a purge gas of the vent header during hydrogen liquefaction. However, helium is roughly 100 times more expensive than nitrogen. To address this issue, this study uses simulations to investigate safe conditions for introducing nitrogen as the purge gas during hydrogen liquefaction. The temperature change from the safety valve to the vent header is evaluated when the external temperature of the safety valve discharge pipe is at 5℃, 10℃, and 20℃. Additionally, the most optimal length for a discharge pipe according to pipe diameter is investigated.

Computation of Crack Tip Stress Intensity Factor of A Slow-Crack-Growth-Test Specimen for Plastic Pipe Using Finite-Element Method (유한요소법에 의한 플라스틱 파이프의 저속균열성장 시험편 균열선단 응력확대계수 계산)

  • Park, Yeong-Joo;Suh, Yeong-Sung;Choi, Sun-Woong;Pyo, Soo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.19-24
    • /
    • 2004
  • The mode I stress intensity factor ($K_I$) of a newly proposed slow-crack-growth-test (Notched Ring Test, NRT) specimen was found using finite-element method. The theoretical $K_I$ value of NRT was not available in any references and could not be solved analytically. At first, in order to verify the accuracy of the finite-element approach, published $K_I$ values of several cracks were calculated and compared with finite-element results. The results were in excellent agreement within inherent errors of theoretical $K_I$. Finally the $K_I$ of NRT was found using 2- and 3-dimensional finite-element methods and expressed as a function of the applied load.

  • PDF