유한요소법에 의한 플라스틱 파이프의 저속균열성장 시험편 균열선단 응력확대계수 계산

박영주[†]· 서영성^{*}· 최선웅^{**}· 표수호^{***}

Computation of Crack Tip Stress Intensity Factor of A Slow-Crack-Growth-Test Specimen for Plastic Pipe Using Finite-Element Method

Yeong Joo Park, Yeong Sung Suh, Sun Woong Choi, Soo Ho Pyo

Key Words: Stress Intensity Factor(응력확대계수), Slow-Crack-Growth-Test Specimen(저속균열성장 시험 시편), Plastic Pipe(플라스틱 파이프), Finite-Element Method(유한요소법)

Abstract

The mode I stress intensity factor (K_I) of a newly proposed slow-crack-growth-test (Notched Ring Test, NRT) specimen was found using finite-element method. The theoretical K_I value of NRT was not available in any references and could not be solved analytically. At first, in order to verify the accuracy of the finite-element approach, published K_I values of several cracks were calculated and compared with finite-element results. The results were in excellent agreement within inherent errors of theoretical K_I . Finally the K_I of NRT was found using 2- and 3-dimensional finite-element methods and expressed as a function of the applied load.

기호설명

 K_I : 모드 I 응력확대계수

E: 탄성계수ν: 프와송 비

L: 하중

1. 서 론

플라스틱관은 가공 성형 시 관의 내부와 외부 의 냉각 차이로 인하여 두께방향의 단면으로 잔

†한남대학교 기계공학과 대학원 E-mail: pyj7608@naver.com

TEL: (042)629-8265 FAX: (042)629-8293

* 한남대학교 기계공학과

** 한남대학교 생명정보신소재공학과

*** 한남대학교 생명정보신소재공학과 대학원

류응력이 형성되는데 내부는 고온으로 인한 인장 잔류응력이, 외부는 내부의 인장력과 상대적 저 온으로 인하여 압축 잔류응력이 형성된다. 현재 플라스틱 파이프의 대표적인 저속균열성장특성에 대한 국제시험규격은 영국에서 개발된 13479⁽¹⁾와 프랑스에서 개발된 ISO 13480⁽²⁾등이 있 는데, 이들 시험규격은 이러한 플라스틱관의 가 공특성이 고려되지 않아 몇 가지 문제점을 가지 고 있다. 먼저 ISO 13480은 일정 변형상태에서 저속균열성장이 측정되는 시험으로 이는 실제 일 어나는 크리프 상태와 상반되는 상황에서 저속균 열성장이 측정되므로 그 사용이 제한되어왔다. 또 현재 저속균열성장 시험법으로 많이 이용되는 ISO 13479는 파이프 외면에 초기균열을 만들고 내압을 가하여 저속균열성장을 개시하는 방법 (Notched Pipe Test, 이하 NPT)으로서 실제 크리 프 상태에서 균열성장이 이루어지는 장점을 가지 고 있지만, 파이프 외면의 압축잔류응력으로 인 하여 균열성장이 지연되어 실제보다 긴 균열성장 시간이 요구된다. 이러한 기존의 저속균열성장시

험의 단점들을 보완하기 위해 파이프를 횡 방향으로 잘라낸 링 형태의 시편 내면에 초기 균열을 만들어 저속균열성장을 개시하는 노치링 시험 (Notched Ring Test, 이하 NRT)이 국내에서 개발 중에 있다. NRT는 인장 잔류응력이 작용하는 내부에서 균열성장이 측정되므로 NPT의 단점을 보완할 수 있고, 관이 가지고 있는 가공의 조건을 모두 포함하고 있는 장점을 가지고 있다. 시험진행 또한 내압 시험장비가 아닌 단순 인장/압축장비가 활용되므로 경제적으로도 유리한 장점을 가지고 있다.

새로 제안된 NRT의 균열선단에서의 모드 I 응력확대계수(K_I)는 해석적인 해가 알려져 있지 않다. 유사한 형상으로서 3점 굽힘하중을 받는 내면균열의 C형 시편에 대한 K_I 이 알려져 있지만 (3) 이 시험법은 파이프를 C형상으로 잘라서 저속균열성장 시험을 하기 때문에 가공 공정에서 발생되는 파이프의 잔류응력이 일부 제거되어 실제의 파이프 거동과는 차이가 있고, NRT와도 시편의 형상이 다르기 때문에 K_I 값이 다르다.

본 연구에서는 NRT의 K_1 을 유한요소 해석법을 이용하여 계산하되, 이론적으로 해가 알려져 있는 몇 가지 경우를 먼저 해석, 비교하여 해석결과의 정확도를 검증하였다.

2. 접근 방법

NRT의 K_1 을 구하기 전에 유한요소 모델링 및 해석의 정확성을 기하기 위하여 이론식이 존재하는 몇 가지 형상을 선택하여 유한요소 해석을 수행하고 이를 이론식과 비교하는 방법으로 유한요소법의 타당성을 검증하였다. 해의 정확도를 확인한 후에는 NRT 시험편에, 대해 2차원 및 3차원 유한요소 해석을 수행하여 두 경우의 해를 비교하고, 응력확대계수(K_1)의 균열선단에서의 하중(L)의 함수로 나타내었다.

2.1 이론식에 의한 응력확대계수

해석법의 타당성 검증을 위하여 다음 세 가지 형상에 대한 응력확대계수를 이론식에 의하여 계 산하였다.

- 인장하중을 받는 평판의 내부 중앙 균열⁽⁴⁾
- 3점 굽힘하중을 받는 C형 시편의 내면균열⁽³⁾

- 균일한 내압을 받는 파이프의 반경방향 모서리 균열⁽⁵⁾

2.1.1 인장하중을 받는 평판의 내부 중앙 균열 인장응력을 받고 있는 평판의 내부 중앙 균열 은 Fig.1과 Table 1에 나타내었다. 이러한 형상에 서 모드 I에 대한 응력확대계수는 식 (1)에 의하 여 구할 수 있다.

$$K_1 = \sigma \cdot \sqrt{\pi \cdot a} \cdot F \tag{1}$$

여기서 $F = \frac{1 - 0.5\alpha + 0.326\alpha^2}{\sqrt{1 - \alpha}} \tag{2}$

 $\alpha = a/W$

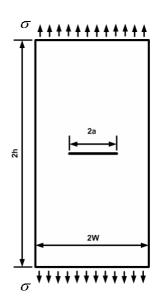


Fig. 1 A central crack in a rectangular sheet subjected to uniform uniaxial tensile stress

Table 1 Geometric and loading configurations for Fig. 1

120 MPa
60 mm
120 mm
2 mm
20 mm

2.1.2 3점 굽힘하중을 받는 C형 시편의 내면균열

3점 굽힘하중을 받는 C형 시편은 Fig.2와 Table. 2에 나타내었다. 마찬가지로 모드 I 에 대한 응력확대계수는 식 (3)에 의하여 구할 수 있다.

$$K_{1} = \frac{L \cdot \tan \theta}{\sqrt{R_{2}} W} \left[\frac{3R_{1}}{R_{2}} \left(\frac{t}{R_{2}} \right)^{-\frac{3}{2}} \right]$$

$$\cdot Y_{1} \cdot \sqrt{\frac{a}{t}} + \frac{1}{2} \left(\frac{t}{R_{2}} \right)^{-\frac{1}{2}}$$

$$\cdot Y_{2} \cdot \sqrt{\frac{a}{t}} \right]$$

$$(3)$$

여기서

$$\tan \theta_i = \frac{S}{2(R_2 - H_i) - D} \tag{4}$$

$$Y_{1} = 1.93 - 3.07 \left(\frac{a}{t}\right)^{1} + 14.53 \left(\frac{a}{t}\right)^{2} - 25.11 \left(\frac{a}{t}\right)^{3} + 25.8 \left(\frac{a}{t}\right)^{4}$$
 (5)

$$Y_2 = 1.99 - 0.41 \left(\frac{a}{t}\right)^1 + 18.7 \left(\frac{a}{t}\right)^2$$

$$-38.48 \left(\frac{a}{t}\right)^3 + 53.85 \left(\frac{a}{t}\right)^4$$
(6)

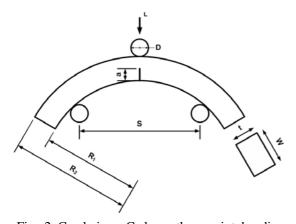


Fig. 2 Crack in a C-shape three-point bending specimen

Table 2 Geometric and loading configurations for Fig. 2

300 N
25 mm
55 mm
45 mm
10 mm
50 mm
3 mm

지면 관계상 균일한 내압을 받는 파이프의 반 경방향 모서리 균열에 관한 내용은 생략한다.

2.2 유한요소해석에 의한 응력확대계수 계산

균열 문제의 해석을 위하여 사용하는 요소는 2차원의 경우 8절점의 4변 요소를, 3차원의 경우는 20절점의 6변 요소를 사용하였으며 균열선단주위의 절점들은 합치고, 가운데 변의 절점은 Fig. 3에서처럼 선단방향으로 1/4만큼 움직여 재배치하였다.

본 연구에서는 모든 경우를 탄성문제로 생각하 였으며 평면변형률로 가정하여 4변 8절점 요소를 사용하였다. 요소분할은 HyperMesh를 이용하였으 며 유한요소 해석은 ABAQUS[®]를 이용하였다.

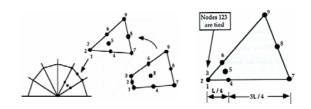


Fig. 3 Quarter node arrangement of a degenerative element

2.2.1 인장하중을 받는 내부균열 평판

시편의 형상이 상하, 좌우 대칭이므로 Fig. 4와 같이 시편의 1/4에 대하여만 총 80개의 요소로 모델링하였다. 해석에 사용된 재료는 AI 2024-T3로 탄성계수 E는 70 GPa, 프와송 비 ν 는 0.33을 적용하였다.

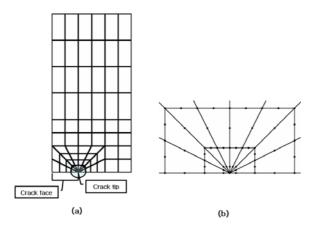


Fig. 4 (a) Total meshes (b) Zoomed crack tip region

2.2.2 3점 굽힘하중을 받는 C형 시편의 내면균열

모델은 좌우 대칭이므로 Fig. 5와 같이 시편의 1/2에 대해서만 유한요소를 생성하였다. 사용한요소의 수는 486개이다. 시편의 재질은 폴리에틸렌으로 탄성계수 E는 540 MPa, 프와송 비 ν 는 0.43을 적용하였다. 시편을 눌러 하중을 가할 하중 핀과, 시편을 받쳐주는 고정 핀은 강체로 가정하고 강체요소를 적용하였다.

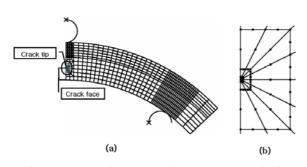


Fig. 5 (a) Total meshes (b) Zoomed crack tip region

2.3 이론식과 유한요소해석결과 K₁ 비교

2.3.1 인장하중을 받는 내부균열 평판

유한요소해석결과와 식 (1)의 이론식을 사용하여 계산한 K_I 값을 비교하면 Fig. 6과 같다. 여기서 인장하중이 120 MPa일 때의 K_I 값을 비교하면 두 결과가 식(1)의 오차범위 \pm 10 % 이내로 잘 일치한다. (인장응력이 120MPa일때 오차율: 0.7%)

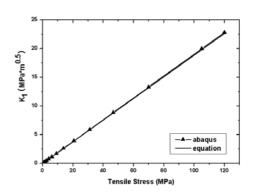


Fig. 6 K_I vs. Tensile stress from ABAQUS and the equation (1)

2.3.2 3점 굽힘하중을 받는 C형 시편의 내면균열

유한요소해석결과와 식 (3)의 이론식을 사용하여 계산한 K_I 값을 비교하면 Fig. 7과 같다. 여기서 작용하중이 300 N일 때의 K_I 값을 비교하면 두 결과가 식 (3)의 오차범위 ± 10 % 이내로 잘일치한다. (인장하중이 150N일때 오차율: 7.35%)

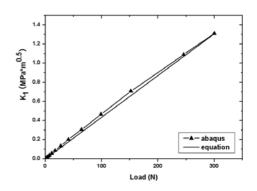


Fig. 7 K_I vs. Bending load from ABAQUS and the equation (3)

3. 유한요소해석계산을 이용한 NRT의 K_I

2절에서 보인바와 같이 유한요소해석으로부터 얻은 K_I 값이 거의 정확히 이론식 값과 일치함을 확인하였다. 따라서 유사한 방법으로 NRT의 유한요소해석을 수행하였다.

3.1 모델과 해석방법

NRT(Notched Ring Test)는 Fig. 8에서 보듯 1개

의 하중 핀과 2개의 고정 핀으로 구성되어 있고, 시편은 파이프에서 절단되어 원통형으로 제작되 며 내면에 균열을 생성시킨다. 시험법은 단순, 인 장/압축장비를 활용하여 3점 굽힘하중을 가하여 저속균열성장시험을 한다.

해석결과의 신뢰성 검토를 위하여 2차원과 3차원 모델링의 두 경우로 해석하고 결과의 비교를 통해 해석결과의 신뢰성을 검토하였다. 하중 핀과 고정 핀은 강체로 가정하여 강체요소를 적용하였다. 시편의 재질은 폴리에틸렌으로 탄성계수 E는 540 MPa, 프와송 비 ν 는 0.43을 적용하였다. NRT시험편은 폭(W)이 25 mm로 두께(t)에 비해넓은 편이 아니다. 때문에 시편 폭의 중앙부(W/2)가 평면변형률 조건을 만족하는지도 검토하였다.

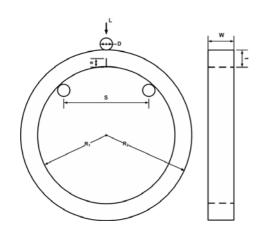


Fig. 8 Crack in a NRT specimen

Table 4 Geometric and loading configurations for Fig. 8

L	300 N	
W	25 mm	
R_2	55 mm	
R_1	45 mm	
t	10 mm	
S	50 mm	
a	3 mm	

3.2 2차원 유한요소해석

시편이 좌우대칭이므로 Fig. 9처럼 시편의 1/2에 대해서만 유한요소를 생성하였으며 생성된 요소의 수는 1318개이다.

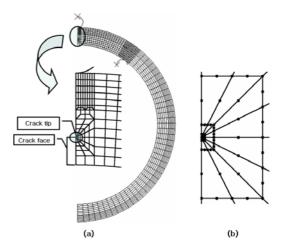


Fig. 9 (a) Total meshes (b) Zoomed crack tip region

3.3 3차원 유한요소해석

2차원의 경우와 마찬가지로 좌우대칭이면서 두 께방향으로도 대칭이므로 시편 전체의 1/4에 대해서만 유한요소를 생성하였다 (Fig. 10). HyperMesh를 이용하여 20절점 요소로 거친 요소를 생성 한 후, 균열선단 주위는 ZenCrack73⁽⁷⁾을이용하여 요소밀도를 높였다. 이때 요소의 가운데 변의 절점은 선단방향으로 1/4만큼 이동시켰다. 생성된 요소의 수는 2321개 이다.

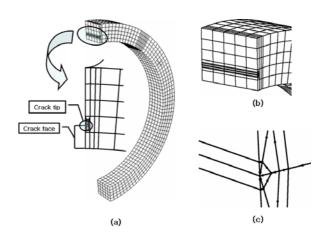


Fig. 10 (a) Total meshes (b), (c) Zoomed crack tip region

3.4 해석결과 및 고찰

서론에서 언급했듯 이미 발표되어있는 보고서나 문헌 중에는 NRT의 형상을 완벽하게 만족시키는 K_i 값을 구할 수 있는 이론식이 없다. 따라서 유한요소법을 이용하여 그 값을 구하였는데, 그러나 앞서 계산한 3점 굽힘하중을 받는 C형 시

편의 내면균열의 경우 NRT와 시편의 형상만 다를 뿐 기타 조건이 유사하므로 구한 K_I 값의 오차가 C형 시편의 내재 오차 10% 이내로 유사할 것으로 추정한다. 또한 Fig. 11에서처럼 2차원과 3차원 해석의 결과가 거의 일치하므로 구한 K_I 값은 정확한 것으로 간주된다. Fig. 11에서 모드 I 응력확대계수(K_I)와 하중(Load)간의 관계는 식 (7)과 같다.

$$K_I = 0.003 \cdot L$$
 (7)

K_I값의 시편 폭에 대한 변화는 Fig. 12와 같은 데, 시편의 중앙 면(z=0)에서 바깥 방향으로 일정한 값을 유지하다가 바깥으로 갈수록 그 값이 점점 감소하는 것을 볼 수 있다. 이는 링의 가운데부분은 평면변형률 이며 바깥쪽으로 갈수록 평면응력으로 천이하기 때문인 것으로 보인다.

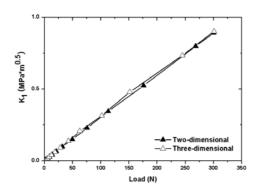


Fig. 11 K_I vs. Load calculated from 2-dimensional and 3-dimensional finite-element calculations

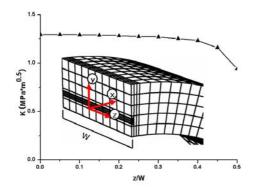


Fig. 12 K_I vs z/W

4. 결 론

- 1) 유한요소법으로 NRT(Notched Ring Test) 시험편 균열선단에서의 K_I 값을 계산하였으며, 해석방법의 타당성을 검증하기 위하여 이론적으로 K_I 값이 알려져 있는 몇 가지 균열 형상들을 선택하여 유한요소 해석을 수행하고 그 결과를 비교하였다. 해석결과는 이에 상응하는 이론식 값과 허용오차 범위 안에서 일치하여 유한요소해석법을 활용하여 구한 K_I 값이 정확할 것임을 보였다.
- 2) NRT(Notched Ring Test) 시험편의 균열선단에서의 K_I 값을 2차원 및 3차원 유한요소법을 활용하여 구하고, 이를 하중의 함수로 나타낼 수있었다.

참고문헌

- (1) ISO, 1997, Polyolefin Pipes for the Conveyance of Fluids Determination of Resistance to Crack Propagation Test Method for Slow Crack Growth on Notched Pipes (Notch Test), ISO 13479:1997.
- (2) ISO, 1997, Polyethylene Pipes Resistance to Slow Crack Growth - Cone Test Method, ISO 13480:1997.
- (3) Uralil, F. S. and Hulbert, L. E., 1985, *The Slow Crack Growth Test for Comparing and Selecting Polyethylene Gas Pipe Materials*, Topical Report, Gas Research Institute(GRI)., B22-B24.
- (4) Rooke, D. P. and Cartwright, D. J., 1976, Compendium of Stress Intensity Factor, London, Her Majesty's Stationary Office., pp.10-11.
- (5) Rooke, D. P. and Cartwright, D. J., 1976, Compendium of Stress Intensity Factor, London, Her Majesty's Stationary Office., pp.240-241.
- (6) Hibbit, Karlsson & Sorensen, Inc., 1998, ABAQUS/Standard User's Manual, Version 5.8.
- (7) Zentech International Ltd., 2004, *Installation* and *Execution Manual for Zencrack 7.3*, Version 7.3.
- (8) Anderson, T. L., 1995, Fracture Mechanics CRC Press, Inc., pp. 586-590.