• Title/Summary/Keyword: Sun Pipe

Search Result 236, Processing Time 0.027 seconds

Cement Prefabricated Piped Making and Its Application on Agriculture Irrigation

  • Meng, Qingchang;Sun, Qingyi;Dang, Yongliang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.212-218
    • /
    • 1996
  • The concrete pipe used to distribute irrigation water to the right place now available is commonly made up of cement , sand, earth, pebble, etc. These materials with right ratio and right amount of water were mixed and squeezed through the pipe-making machine called vertical squeezed pipe-making machine, and then a cement prefabricated pipe is produced . This kinds of pipe has been expanding by leaps and bounds. Being little cement contents and low cost, the length of pipe is 1.0m or so with weight of 50kg, which is easy to be made and to be transported. The demolish pressure of it is 0.2 MPa or so, which meets the needs of agriculture irrigation . The buried pipe irrigation system, has been popularized in Jining Municipal , Shandong Province. By the year of 1995 , the irrigation area under pipe conveyancesystem usign this type of pipe has reached 74000 hectares. By calculation, about 27.7million ㎥ water, 2.88 million kWh power , 0.167 million man power and 1528 hectares cu tivated land will be saved one year, adding value of agriculture output increased by 10 million kg. The total economic benefits amount to 0.92 million US$ a year. The paper presents the pipe making course and its application on a large scale area.

  • PDF

A study on the Analyses of T-branch Pipe Forming using a Finite Element Method (유한요소법을 이용한 분기배관의 성형해석에 관한 연구)

  • Nam, Jun-Seok;Baek, Chang-Sun;Lim, Kwang-Kyu;SaKong, Seong-Ho;So, Soo-Hyun;Min, Kyung-Tak
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.98-105
    • /
    • 2007
  • On this study, we verified the possibilities of making T-branch pipe forming with carbon steel pipes and stainless steel pipes used by common FEM Program(ABAQUS) which are widely used in the fire protection and building construction fields. In this kind of T-branch pipe forming works, in principle, the seamless pipe is used. If the pipe has the seam, the forming face must be the opposite side of the seam. The forming works are carried out by a truncated cone shaped plug. We found that the face slope and the length of plug are the most important factor in pipe forming. Based on the results of forming analyses, we proposed the minimum height and thickness of pipe branch forming.

A study on the strength Change of Used Pipe Support (재사용 파이프서포트의 내력변화 연구)

  • Baek, Sin-Won;Choe, Sun-Ju
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.38
    • /
    • pp.79-87
    • /
    • 2006
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. In constructions site, pipe supports are usually used as shores which are consisted of the stab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. Among the accidents and failures that occur during concrete construction, there are many formwork failures which usually happen at the time concrete is being placed. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KSF 8001. In this study, the strength of pipe support according to age, use frequency and load carrier was predicted using SPSS 12.0. It was known that the strength of pipe support using for 5 years was reduced to 42.8%. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a firm base to prevent formwork collapses.

  • PDF

Pipe Stiffness Prediction of Buried Flexible Pipes (지중매설 연성관의 관강성 추정)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • In this paper, we present the result of an investigation pertaining to the pipe stiffness of buried flexible pipes. Pipe stiffness (PS) formula for the parallel plate loading condition is derived based on the elasticity theory. Vertical and horizontal displacements are also derived. Vertical deflection is always larger than the horizontal deflection because some of energy due to overburden load is stored in the pipe but the difference is negligibly small. In the study, mechanical properties of the flexible pipes produced in the domestic manufacturer are tested and the results are reported in this paper. In addition, pipe stiffness is determined by the parallel plate loading tests and the finite element analysis. The difference between test and analysis is less than 14% although there are significant variations in the mechanical properties of the pipe material. Therefore, it was found that the finite element analysis can be used to predict the pipe stiffness instead of conducting parallel plate loading test.

The development of a practical pipe auto-routing system in a shipbuilding CAD environment using network optimization

  • Kim, Shin-Hyung;Ruy, Won-Sun;Jang, Beom Seon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.468-477
    • /
    • 2013
  • An automatic pipe routing system is proposed and implemented. Generally, the pipe routing design as a part of the shipbuilding process requires a considerable number of man hours due to the complexity which comes from physical and operational constraints and the crucial influence on outfitting construction productivity. Therefore, the automation of pipe routing design operations and processes has always been one of the most important goals for improvements in shipbuilding design. The proposed system is applied to a pipe routing design in the engine room space of a commercial ship. The effectiveness of this system is verified as a reasonable form of support for pipe routing design jobs. The automatic routing result of this system can serve as a good basis model in the initial stages of pipe routing design, allowing the designer to reduce their design lead time significantly. As a result, the design productivity overall can be improved with this automatic pipe routing system.

Performance Test of an Oxidizer Tunnel-Type Pipe for Launch Vehicle (발사체 산화제 터널형 배관 성능시험)

  • Kil, Gyoung-Sub;Han, Sang-Yeop;Kho, Hyeon-Seok;Shin, Dong-Sun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.273-277
    • /
    • 2009
  • An oxidizer tunnel-type pipe, which shall transport oxidizer from an oxidizer tank to a turbo-pump of an engine, studied is installed through a fuel tank located under an oxidizer tank. A tunnel-type pipe can save weight compared to a detour-type pipe, however may vary the temperature of fuel stored in a fuel tank because of a broad heat transfer area. Hence in this study the characteristics of main oxidizer pipe and thermal propagation from oxidizer to a fuel tank are monitored by a cryogenic performance test with a tunnel-type pipe. In addition, the possibility of adaptation of an oxidizer tunnel-type pipe to launcher system is also analyzed.

  • PDF

A Study on the Strength Analyses of T-Branch Pipes (분기배관의 강도해석에 관한 연구)

  • Nam, Jun-Seok;SaKong, Seong-Ho;Baek, Chang-Sun;Lim, Kwang-Kyu;Jeong, Jae-Han;Min, Kyung-Tak
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.36-41
    • /
    • 2007
  • In this study, we determined TBP(T-branched pipe) would be available in Fire Safety Codes with strength analyses. A common FEM Program(ABAQUS) was used as analyses method, and the analyses results were confirmed by strength tests of the T-branch pipe. As a result, we concluded that the T-branch pipe can be used safely. Further more, we determined what kind of stainless steel pipe can be used in place of carbon steel pipe(KS D 3507). The stainless steel pipe name Is KS D 3576(stainless steel pipe) 10S, so they can be applied for piping in fire protection system.

An Experimental Study for the Liquid Freezing Phenomena in a Pipe During Ice Plugging (결빙 관막음시 배관내 유체 결빙현상의 실험적 연구)

  • Park, Yeong-Don;Jo, Hyeon-Cheol;Choe, Byeong-Ik;Kim, Gwi-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.366-372
    • /
    • 2001
  • The ice plugging process consists of placing liquid nitrogen around a pipe and removing heat until the water in the pipe freezes and provides a solid plug or seal against fluid movement. This technique enables us to repair or inspect a pipe system without shutdown of entire system. A set of test apparatus for investigation of the liquid freezing phenomena during ice plugging is prepared. This study shows the characteristics of the liquid freezing and the heat transfer with various pipe and freezing jacket conditions. And in case there is flow of the fluid inside the pipe, the flow rate which can be able to form the ice plug is identified with the effect of the pipe diameter and freezing jacket length on the plug formation. The permissible maximum flow rate for the complete plug formation is approximately proportional to the freezing jacket length at the same pipe diameter condition.

Analysis on the Circumference Wall Temperature in a Long Horizontal Pipe with Thermal Stratification

  • Ahn, Jang-Sun;Ko, Yong-Sang;Kim, Yu-Hwan;Park, Byeong-Ho;Kim, Eun-Kee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.364-370
    • /
    • 1995
  • The One-dimensional fin model is used to analyze the angular wall temperature variation of long horizontal lines, where stratification could result in top-to-bottom differences in wall temperatures. The top and bottom sections are treated separately and coupled by boundary conditions. The thermal stratification analysis is focused on the effects of the heat transfer rates at the pipe surface. The results show that the heat transfer rate at the pipe surface is the controlling parameter which reduce significantly the temperature difference in pipe circumferential direction. The one-dimensional fin modelling analysis results are verified by comparison with the operating PWR test data. The circumferential temperatures of pipe calculated by one-dimensional fin modelling agree well with the PWR plant test data.

  • PDF