• 제목/요약/키워드: Sulfur discharge

검색결과 68건 처리시간 0.023초

스크러버 연계 배기가스 배출제어용 3방향 댐퍼밸브의 구조 안전성 평가 (Structural Safety Evaluation of a 3-way Damper Valve for Scrubber-linked Exhaust Gas Control)

  • 김영훈
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1007-1014
    • /
    • 2020
  • IMO(International Maritime Organization) continues to strengthen environmental regulations on exhaust gases such as CO2, NOx, SOx. As for sulfur oxides, from 1 January 2020, all ships on international voyages must use fuel with a sulfur content of 0.5% or less. Or, it is obligatory to use an exhaust gas treatment device that has the same effect. Shipping companies are using low-sulfur oil, replacing them with LNG fuel, or installing scrubbers that suppress sulfur oxide emissions. In the case of ships using bunker C oil, the load on the engine is lower when entering and departing, so the exhaust gas pressure is lowered and the scrubber cannot be properly utilized. Therefore, diesel oil with low sulfur content is used when entering and leaving the coast. When diesel oil is used, exhaust gas is directly discharged through the control system and piping system, and when bunker C oil is used, sulfur oxides are reduced by scrubbers through other control systems and piping systems to discharge exhaust gas. Accordingly, a company has developed a system called a three-way damper valve that can control exhaust gas emissions while integrating these two control systems and piping systems into one. In this study, the control characteristics of the integrated exhaust gas control system and structural safety against external loads in a high-temperature exhaust gas environment were reviewed.

전구내 NaI 첨가에 의한 무전극 황전등의 특성 변화 (Characteristic Change of Electrodeless Sulfur Lamp Induced by Adding of Nal)

  • 구선근;박기준;추장희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권11호
    • /
    • pp.724-729
    • /
    • 1999
  • We developed the correlated color temperature (CCT) control technique for electrodeless sulfur lamp (ESL) by adding a few milligrams of NaI into sulfur discharge bulb. Nal produces intense Na D-line that changes the CCT of the ESL. We can adjustthe CCT in the range of 8,400 K to 3,600 K. Color rendering index can be maintained between 79 and 90 for the adjustable range of the CCT. the NaI helps the ESL dischargeable at below 0.5 kW of forward microwave power into the bulb. We have shown that this technique did not cause reduction of luminance compared to electrodeless elemental sulfur lamp.

  • PDF

마이크로파 방전에 의한 Sulfur와 NaI의 광학적 특성 (Optical Properties of Sulfur and NaI by Microwave Discharge)

  • 이종찬;황명근;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.109-111
    • /
    • 2002
  • The fundamental principles of the operation of microwave discharges that are used to convert microwave energy to broad spectrum visual light are known. In this paper, emission dependance of microwave discharges in mixture content of sulfur with noble gases was studied. It is shown that the excitation of this gaseous mixture is carried out in two phases; (1) ionization of noble gas atoms by a microwave field and (2) the consequent maintenance of slightly ionized nonequilibrium plasma by the field. These two processes have essentially various thresholds for the microwave pump. The purpose of this work is to investigate spectral properties of the high frequency discharges in a mixture sulfur vapors with noble gases.

  • PDF

복합촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구 (A study of decomposition of sulfur oxides using Composite catalyst by plasma reactions)

  • 우인성;황명환;김다영;김관중;김성태;박화용
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 춘계학술대회
    • /
    • pp.655-668
    • /
    • 2013
  • In this study, a combination of the plasma discharge in the reactor by the reaction surface discharge reactor complex catalytic reactor and air pollutants, hazardous gas SOx, change in frequency, residence time, and the thickness of the electrode, the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. 20W power consumption 10kHz frequency decomposition removal rate of 99% in the decomposition of sulfur oxides removal experiment that is attached to the titanium dioxide catalyst reactor experimental results than if you had more than 5% increase. If added to methane gas was added, the removal efficiency increased decomposition, the oxygen concentration increased with increasing degradation rate in the case of adding carbon dioxide decreased.

  • PDF

Improved Cycle Performance of Sulfur-Doped LiFePO4 Material at High Temperatures

  • Lee, Seung-Byung;Cho, Seung-Hyun;Aravindan, Vanchiappan;Kim, Hyun-Soo;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2223-2226
    • /
    • 2009
  • Pristine and sulfur-doped (LiFe$PO_{3.98}S_{0.03}$) lithium iron phosphates were synthesized by a sol-gel method. The XRD pattern of the prepared materials suggested an orthorhombic structure with a Pnma space group and an absence of impurities. The Li/LiFe$PO_4$ or LiFe$PO_{3.98}S_{0.03}$ cells were employed for cycling studies at various temperatures (25, 50 and $60\;{^{\circ}C}$). In all cases, the Li/LiFe$PO_{3.98}S_{0.03}$ cell showed an improved performance with a stable discharge behavior of ~155 mA$hg^{-1}$. Nevertheless, pristine LiFeP$O_4$ cells presented poor discharge behavior at elevated temperatures, especially $60\;{^{\circ}C}$.

바이오필터와 황-석회석을 이용한 단일흐름 공정에서의 질산화와 탈질 연구 (A Study on Nitrification and Denitrification in Biofilter & Sulfur- Limestone Single Stream Process)

  • 김태규
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.469-477
    • /
    • 2006
  • When denitrification was connected with a single stream process by using biofilter and sulfur-limestone, it was found that such connection enabled highly efficient nitrification without special unit operation of microorganisms or injection of external carbon sources which is being shown in general biological treatment processes. It was observed that in the trickling filter bed, decomposition of organic substances and highly efficient nitrification by both the forced pressure feed trickling and the air fan were simultaneously done. In the denitrification tank where sulfur-limestone was mixed at a certain ratio, limestone was used by autotrophic microorganisms as a source of supply for alkalinity, and nitrate $NO_{3}^{-}$-N was denitrified into nitrogen gas. And in the sulfur-limestone autotrophic denitrification, $NO_{3}^{-}-N\;or\;NO_{2}^{-}-N$ was denitrified as a sulfur compound in reduction state was oxidized into a final output of $SO_{4}^{-2}$. The mean concentration of the discharge water was 8.6 mg/l for T-N and 0.8 mg/l for T-P, respectively, and their mean treatment efficiency was 79.2% and 80.8%, respectively. Implementing highly efficient denitrification without injection of an external organic carbon source or internal return, it is concluded that the proposed process is suitable for a sewerage in a small village with the merits of low power consumption and easy maintenance.

상온형 나트륨/유황 이차전지 개발 동향 (Development of Room Temperature Na/S Secondary Batteries)

  • 유호석;김인수;박진수
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

리튬 전지용 유황전극의 탄소나노튜브 조성에 따른 전기화학적 특성 (The Electrochemical Properties of Sulfur Electrode with Composition of MWNT for Li Battery)

  • 유지현;박진우;김기원;류호석;안주현;김동주;진창수;신경희;안효준
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.83-91
    • /
    • 2011
  • We investigated the effect of composition of a sulfur electrode with MWNT on the discharge behavior and cycling property of a Li/S cell. The MWNT content of a 60wt.% sulfur electrode varied from 10 wt.% to 30 wt.%. The optimum content of MWNT is 20wt.%, which shows the best cycling property. The first discharge capacity is 1166 mAh/g and decrease to the 542 mAh/g after 30th cycle. The homogeneous distribution of MWNT is an important factor for cycling properties.