• Title/Summary/Keyword: Sulfur compound

Search Result 231, Processing Time 0.028 seconds

An Analysis and Improvement of the Experiments for Comparing Properties of a Mixture with a Compound of Iron and Sulfur in the Middle School Science Textbooks (중학교 과학 교과서에 제시된 철과 황의 혼합물과 화합물 성질 비교 실험의 분석 및 개선)

  • Park, Kyong-Hee;Kang, Seong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.93-100
    • /
    • 2007
  • The purposes of this study were to analyze problems in the experiments for comparing properties of a mixture with a compound of iron and sulfur and then to suggest the improved experiments. For this study, the experimental methods in 9th science textbooks described were analyzed and middle school science teachers were asked to conduct the experiment according to the process of the textbook and to point problems of the experiment. Two alternative experiments, which improves the problems of the toxic and provocative experiment and of distinction between a mixture and a compound by magnetic properties, were proposed. The two experiments were applied to the 10 science teachers and 60 students from a “S” middle school. They responded that the experiments were suitable for comparing properties of a mixture and a compound and helpful to understand the concept.

The Effect of Simultaneous Application with Biodiesel and ULSD on Exhaust Emissions and DOC (배출가스 및 DOC에 대한 바이오디젤과 ULSD의 동시 적용효과)

  • 박만재;백두성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.62-68
    • /
    • 2004
  • To comply with stringent exhaust emission standards, it is necessary to reserch on some better quality of automotive fuels. Sulfur in fuels is sulfur compound by DOC and then it caused to the increase of PM on the surface of the catalyst. This research is focused on diesel emission characteristics and poisoning effect on Diesel Oxidation Catalyst when Ultra Low Sulfur Diesel(ULSD) and biodiesel are applied simultaneously. The biodiesel is used to improve viscosity of fuel specially in fuel injection system of engine since the introduction of ULSD may degrade viscosity in the process of desulfurization. Furthermore, this study may provide some basic data for the design of emissions reduction technology.

Novel Linking Ligand Containing Sulfur-Donor Atoms and Its Compounds of Palladium and Silver

  • Lee, Hee-K.;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.421-426
    • /
    • 2007
  • A linking ligand containing sulfur donor atoms in the terminal thiophene rings, 1,2-bis(thiophen-2-ylmethylene) hydrazine (L), was prepared by Schiff-base condensation. Ligand L reacted with [PdCl2(NCPh)2] to produce a molecular Pd compound [PdL2Cl2] (1). On the other hand, it reacted with AgNO3 and AgClO4 to produce a 2-D network [AgL0.5(NO3)] (2) and a 1-D polymer [AgL]ClO4 (3), respectively, whose structures are based on secondary intermolecular forces such as H-bonding, van der Waals interaction, and π-π stacking. Polymer 2 exhibited photoluminescence at room temperature in the solid state.

Development of an Analytical Approach to Measure Volatile Sulfur Compounds Using a Non-Cryogenic Preconcentration Method (비냉각형 선농축 방식에 의한 대기 중 휘발성 황화합물의 분석방법 개발)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.355-360
    • /
    • 1997
  • The atmospheric concentration of dimethylsulfide (DMS), known as the predominant volatile organic. sulfur compound, is determined at subnanogram level by a combined application of non-cryogenic preconcentration method and gas chromatography with flame photometric detection (GC/FPD). The volatile DMS in air is preconcentrated using a trapping tube containing adsorbent like Molecular Sieve 5A (or gold-coated sands). The tube is then connected to the GC/FPD system via a six-way rotary valve, thermally desorbed at 40$0^{\circ}C$, separated on OV101 column, and detected by a flame photometric detector. The DMS peak elutes at about 2.5 mins and is integrated electronically. The analytical precision, if expressed in terms of relative standard error, is around 5%. The detection limit of our GC/FPD system is ca 1 ng of DMS. Details of our analytical system are presented.

  • PDF

Autrophic Denitrification of Bank Filtrate Using Elemental Sulfur (황을 이용한 강변여과수의 독립영양탈질)

  • 문희선;남경필;김재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.209-212
    • /
    • 2000
  • As a bench-scale study, transformation of nitrate to nitrogen gas under anoxic condition was determined by using autotrophic denitrifiers containing Thiobacillus denitrificans and elemental sulfur as an electron donor. The research objective is to measure the basic kinetic parameters of autotrophic denitrification reaction on the removal efficiency of nitrate. The results showed that nitrate was almost completely transformed to nitrite in the first 4 days of column operation. After 2 days of accumulation of nitrite, its concentration slowly decreased and the compound was detected less than 0.5 mg/L in 14 days. In the experiment, sulfate concentration in the effluent was the 70~90 mg-S/L and the pH was maintained around pH 7.5. When nitrate concentration of bank filtrate in the real field is considered, this sulfate concentration seems to be acceptable. At 17 cm from the bottom of the column, the effluent showed the highest nitrite concentration, and nitrate concentration decreased rapidly to the Point of 33 cm from the bottom. The results suggest that an appropriate thickness of permeable reactive barriers is about 30 cm.

  • PDF

Treatment Efficacy on Oral Malodor according to Pre-treatment Volatile Sulfur Compound Level (구취의 심도에 따른 치료 효과에 대한 비교 연구)

  • 이상구;고홍섭;이승우
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.3
    • /
    • pp.263-270
    • /
    • 1998
  • Considering various factors contributing oral malodor, the accurate prediction of prognosis is very important to both clinician and patients. The present study has been performed to invetigate the relationship between treatment effeicacy and pre-treatment volatile sulfur compounds (VSC) level. Ninety patients were divided into three groups, A(<150ppb), B(150< <200ppb), and C(>200ppb) groups, according to pre-treatment VSC level detected by Halimeter, and each group included 30 patients. Routine therapeutic measures for oral were provided to each patient which consisted of oral prophylaxis, tooth brushing and flossing instruction, tongue scraping by proper device, and gargling of 0.25% ZnCl2 Solution. The group with high pre-treatment VSC level (>150ppb) showed significant reduction of VSC level at 1 and 3 weeks after. However, the group with low pre-treatment VSC level (<150ppb) did not show any significant reduction during the experimental periods. Collectively, the results suggested that patients with high pre-treatment VSC level show better prognosis.

  • PDF

Nanofiller as Vulcanizing Aid for Styrene-Butadiene Elastomer

  • Sahoo, N.G.;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.369-372
    • /
    • 2002
  • The use of ZnO and stearic acid is very well known in sulfenamide accelerated sulfur vulcanization of diene elastomers. Zn-ion coated nano filler has been developed and tested, in styrene-butadiene rubber (SBR) as sulfur vulcanizing activator cum reinforcing filler. In this study Zinc oxide has been replaced by the Zn-ion coated nano silica filler with an aim to study the dual role of this nanofiller in SBR. The presence of Zn-ion on the nano silica filler surface activates the sulfur vulcanization by involving Zn++ in to the sulfurating complex formed with thiazole from sulfenamide. The increase of Zn-ion, on the nanofiller, decrease the scorch safety of the elastomer compound but increase the tensile strength, state of cure and tear strength and attain maximum at its 10% level. The presence of stearic acid increases the rate of vulcanization. Replacement of stearic acid with mono-stearate, however, increases the vulcanization rate but decrease the ultimate state of cure. A mechanistic scheme involving dual function of this nanofiller has been suggested.

Desulfurization of Sulfur Compounds in City-gas using Metal Salt Impregnated Zeolite (금속이온이 담지 된 제올라이트를 이용한 도시가스 내 부취제 제거)

  • Song, Hirn-Ill;Ko, Chang Hyun;Kim, Jae Chang;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • In hydrogen production for fuel cell by reforming city-gas, sulfur compounds, odorant in city-gas, are detrimental to reforming catalyst and fuel cell electrodes. We prepared metal salt impregnated ${\beta}-zeolite(BEA)$ to remove sulfur compound in city-gas by adsorption. The sulfur breakthrough adsorption capacity was changed depending on the concentration and species of metal salt. $AgNO_3$ impregnated BEA showed the highest sulfur breakthrough capacity among adsorbents used in this experiment(41.1 mg/g). But metal salt impregnated BEA such as $Ni(NO_3)_2/BEA$, $Fe(NO_3_)_3/BEA$, $Co(NO_3)_2/BEA$ showed a certain amount of sulfur adsorption capacity comparable to $AgNO_3/BEA$. Adsorption temperature effect, desorption study, and x-ray photoelectron spectroscopy analysis revealed that the dominant interaction between metal impregnated adsorbent and sulfur compounds was not chemisorption but physisorption.

The Performance Degradation of PEMFCs Fabricated with Different GDLs During Exposure to Simultaneous Sulfur Impurity Poisoning Condition (서로 다른 GDL을 이용한 고분자전해질 막 연료전지의 황불순물 복합피독에 의한 성능 저하)

  • Lee, Soo;Kim, Jae-Hyun;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.146-151
    • /
    • 2013
  • This paper reveals the performance decrease and recovery of PEMFC when the contaminated fuel gas and air source with sulfur impurities such as hydrogen sulfide and sulfur dioxide were simultaneously introduced to anode and cathode, respectively. Three different GDLs were fabricated with different carbon black and activated carbon to prevent an introduction of sulfur compound impurities into MEA. components. The severity of $SO_2$ and $H_2S$ poisoning was depended on concentrations(3 ppm - 10 ppm) of sulfur impurities. Especially, cell performance degradation rate was rapid when MEA fabricated with CN-2 GDL because it had little porosity on GDL surface. Moreover, the cell performance can be recovered up to 90%-95% only with neat hydrogen and fresh air feeding.. Conclusively, MEA fabricated with porous CN-1 GDL showed the best cell performance and recovery efficiency during exposure to poisoning condition by simultaneous sulfur impurities.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.