• Title/Summary/Keyword: Sulfonylurea herbicide

Search Result 48, Processing Time 0.025 seconds

Control of Sulfonylurea Herbicide-Resistant Lindernia dubia in Korean Rice Culture

  • Kuk, Yong-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.328-334
    • /
    • 2002
  • A Lindernia dubia (L.) Pennell var. dubia accession from Jeonnam province, Korea was tested for resistance to sulfonylurea (SU) herbicides, imazosulfuron and pyrazosulfuron-ethyl in whole-plant response bioassay. The accession was confirmed resistant to both herbicides. The $GR_{50}$ (herbicide concentration that reduced shoot dry weight by 50%) values of resistant accession were 264 and 19 times higher to imazosulfuron and pyrazosulfuronethyl, respectively, than that of the standard susceptible accession. The surviving resistant L. dubia after pyrazosulfuron-ethyl + molinate application can be controlled by sequential applications of soil-applied herbicides, butachlor, dithiopyr, pyrazolate, and thiobencarb and foliar herbicides, bentazon. Sulfonylurea-based mixtures such as mixtures of azimsulfuron + anilofos, bensulfuron-methyl + oxadiazon, pyrazosulfuron-ethyl + fentrazamide, and pyrazosulfuron-ethyl + anilofos + carfentrazon can also be used to control the surviving resistant L. dubia. However, use of these mixtures should be restricted to a special need basis. Thus, we suggest that sequential applications of non-SU-based mixtures such as butachlor + pyrazolate and MCPB + molinate + simetryne be used to control the surviving resistant L. dubia after SU herbicide applications. Rice yield was reduced 24 % by resistant L. dubia that survived after the pyrazosulfuron-ethyl + molinate application compared with pyrazolate + butachlor in transplanted rice culture. In vitro ALS activity of the resistant biotype was 40 and 30 times more resistant to imazosulfuron and pyrazosulfuron-ethyl, respectively, than the susceptible biotype. Result of in vitro ALS assay that the resistance mechanism of L. dubia to SU herbicides may be due, in part, to an alteration in the target enzyme, ALS.

Expression in Escherichia coli, Purification, and Characterization of the Tobacco Sulfonylurea Herbicide-Resistant Recombinant Acetolactate Synthase and Its Interaction with the Triazolopyrimidine Herbicides

  • Kil, Mee-Wha;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.287-295
    • /
    • 1998
  • Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of L-Ieucine, L-isoleucine, and L-valine. The sulfonylurea-resistant ALS gene from Nicotiana tabacum was cloned into the bacterial expression vector pGEX-2T. The resulting recombinant plasmid pGEX-ALS3 was used to transform Escherichia coli strain XL1-Blue, and the mutant tobacco ALS (mALS) was expressed in the bacteria as a protein fused with glutathione S-transferase (GST). The fusion product GST-mALS was purified in a single step on a glutathione-Sepharose column. ALS activities of 0.9-2.5 ${\mu}mol/min/mg$ protein were observed in the GST-mALS, and the Km values for pyruvate, FAD, and TPP were 10.8-24.1, $(1.9-8.9){\times}10^{-3}$, and 0.14-0.38 mM, respectively. The purified GST-mALS was resistant to both the sulfonylurea and the triazolopyrimidine herbicides, and lost its sensitivity to end products, L-valine and L-leucine. For comparision, the tobacco wild-type recombinant ALS fused with GST, GST-wALS, was also characterized with respect to its pyruvate and cofactor bindings. These results suggest that the purified mutant recombinant tobacco ALS was functionally active, that the mutations resulting in herbicide resistance has affected pyruvate and cofactor bindings," and that the two classes of herbicides interact at a common site on the plant ALS.

  • PDF

Effective Herbicides for Control of Sulfonylurea-Resistant Monochoria vaginalis in Paddy Field

  • Kuk, Yong-In;Kwon, Oh-Do
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.286-291
    • /
    • 2003
  • Monochoria vaginalis is one of the most troublesome resistant weeds in Korean rice culture. Thus, the objectives of this study were to evaluate the response of M. vaginalis resistant to sulfonylurea(SU) herbicides and to determine alternative herbicides for the control of resistant M. vaginalis in direct seeded and transplanted rice culture in Korea. In greenhouse studies, the resistant biotype was 31-, 38-, 3172-, and 7-fold more resistant to ben-sulfuron-methyl, cyclosulfamuron, imazosulfuron, and pyrazosulfuron-ethyl, respectively, than the susceptible biotype, indicating cross-resistance to the SU herbicides used in this study. Non-SU herbicides, butachlor, carfentrazone-ethyl, mefenacet, pretilachlor, pyrazolate, and thiobencarb, several SU herbicide-based mixtures, ethoxysulfuron plus fentrazamide, pyrazosulfuron-ethyl plus pyrazolate plus simetryn, and non-SU herbicide-based mixtures, pyrazolate plus butachlor, pyrazolate plus pretilachlor, simetryn plus molinate, carfentrazone-ethyl plus butachlor, and carfentrazone-ethyl plus thiobencarb can be used to control both the resistant and susceptible biotypes of M. vaginalis when applied before the second leaf stage. In the field experiment, the resistant biotype of M. vaginalis that survived from the paddy fields treated with a SU herbicide-based mixture could effectively be controlled by using mixtures of bentazone plus MCPA, bentazone plus mecoprop-P, and bentazone plus 2,4-D when applied at 2 or 4 main leaves. Our results suggest that the SU-resistant M. vaginalis had not developed multiple resistances to herbicides with different modes of action. In particular, bentazone plus MCPA and bentazone plus mecoprop-P were effective control measures after failure to control resistant M. vaginalis in Korean rice culture.

Chemical Stabilization Study for Sulfonylurea Herbicides (Sulfonylurea계(系) 제초제(除草劑)의 화학적(化學的) 안정성(安定性))

  • Chen, Chia-Chung
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.135-138
    • /
    • 1997
  • Sulfonylureas are highly active herbicides which can be applied at very low rate(10-50g/ha) to control broadleaf weeds. The nature of this category of compound is, however, very unstable toward hydrolysis. Therefore, the preparation of these compounds as liquid formulation was not possible. Most of the current formulations of sulfonylurea are in dry forms such as water dispersible granule or wettable powder. Even in these dry forms, the active ingredients also encounter significant chemical decomposition. This study involves the preparation of the sulfonylurea salts by reacting the parent compound with base such as sodium hydroxide. The salt becomes stable toward hydrolysis and it turns soluble when diluted with water. This discovery makes the preparation for liquid formulation or soluble granule of sulfonylurea possible. The stoichiometry of base added to the neutral sulfonylurea is controlled quite precisely. The base has to be added enough to quench the acidic impurities in the technical material and to convert the active ingredient into salt. However, the base should not be overused to cause further saponification of the sulfonylurea salts. The chemical nature of these compounds is presented and the chemical reaction is described. New soluble liquid formulation and solid granule formulation of sulfonylurea are suggested.

  • PDF

Sulfonylurea Herbicide Resistance Mechanism of Some Acetohydroxy Acid Synthase Mutants and New Designed Herbicides Specific to the Mutants

  • Choe, Mun Myong;Kang, Hun Chol;Kim, In Chul;Li, Hai Su;Wu, Ming Gen;Lee, Im Shik
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.28-31
    • /
    • 2017
  • The mutation rate of proline in the position 197 (Pro197) in acetohydroxy acid synthase (AHAS) is highest among sulfonylurea (SU) herbicide-resistance mutants. Therefore, it is significant to investigate the resistance mechanism for the mutation and to develop the herbicides specific to the mutants. SU herbicide resistance mechanism of the mutants, 197Ser, 197Thr and 197Ala, in AHAS were targeted for designing new SU-herbicide. We did molecular dynamics (MD) simulation for understanding SU herbicide-resistance mechanisms of AHAS mutants and designed new herbicides with docking and MD evaluations. We have found that mutation to 197Ala and 197Ser enlarged the entrance of the active site, while 197Thr contracted. Map of the root mean square derivation (RMSD) and radius gyrations (Rg) revealed the domain indicating the conformations for herbicide resistant. Based on the enlarging-contracting mechanism of active site entrance, we designed new herbicides with substitution at the heterocyclic moiety of a SU herbicide for the complementary binding to the changed active site entrances of mutants, and designed new herbicides. We confirmed that our screened new herbicides bonded to both AHAS wild type and mutants with higher affinity, showing more stable binding conformation than the existing herbicides.

Rapid diagnosis and control of sulfonylurea resistant Monochoria korsakowii (Sulfonylurea계 제초제 저항성 물옥잠의 조기진단과 방제)

  • Park, Tae-Seon;Moon, Byeong-Chul;Cho, Jeong-Rae;Kim, Chang-Suk;Kim, Moo-Sung;Kim, Kil-Ung
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • Sulfonylurea(SU)-resistant Monochoria korsakowii has resently been found in rice fields in Korea. A quick, practical and accurate test of confirming herbicide resistance is necessary to take timely management decision. This article describes a rapid reliable assay to detect SU-resistant biotype of Monochoria korsakowii. Up to now, the resistance to SU has been usually checked by application seedlings with herbicide. This application technique is time consuming and not practical. Therefore, we have developed efficient, rapid and practical diagnosis which allow easy detection of the SU-resistant Monochoria korsakowii by survival rate and regenerated plant length to herbicide application after cutting plants $0.5\sim1cm$ from the planted surface. This new rapid diagnosis can determine the SU resistance of the Monochoria korsakowii within 7 days at least. If the resistance of Monochoria korsakowii is identified by the rapid diagnosis, the selection of herbicide according to the stages of plants for the effective control is very important. The resistant biotype which treated with SU herbicide-based mixtures survived from the fields could effectively be controlled by soil application of butachlor+pyrazolate GR or by foliar application of the mixtures of bentazone SL and 2,4-D SL.

Development of the Simultaneous Analysis of 36 Sulfonylurea Herbicide Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 제초제 Sulfonylurea계 36종 동시 시험법 개발)

  • Su Jung Lee;Jung Mi Lee;Gui Hyun Jang;Hyun-Kyung Kim;Ji Young Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.139-151
    • /
    • 2023
  • Sulfonylurea herbicides are widely used in agriculture because they have a long residual period and high selectivity. An analytical method was developed using QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) technique for simultaneous determination of sulfonylurea herbicide residues in agricultural products by liquid chromatography tandem mass spectrometry and for establishment MRL (Maximum Residue Limit) of those herbicides in Korea. Extraction was performed using acetonitrile containing 0.1% formic acid with MgSO4 (anhydrous magnesium sulfate) and NaCl (sodium chloride) and the extract was cleaned up using MgSO4 and C18 (octadecyl). The matrix-matched calibration curves were composed of 7 concentration levels from 0.001 to 0.25 mg/kg and their coefficients of determination (R2) exceeded 0.99. The recoveries of three spiking levels (LOQ, 10LOQ, 50LOQ, n=5) were in the range of 71.7-114.9% with relative standard deviations of less than 20.0% for all the five agriculture products. All validation values met criteria of the European Union SANTE/11312/2021 guidelines and Food and Drug Safety Evaluation guidelines. Therefore, the proposed analytical method was accurate, effective, and sensitive for sulfonylurea herbicide residues determination in agricultural commodities.

Differential Responses of Two Freshwater Cyanobacteria, Anabaena variabillis and Nostoc commune, to Sulfonylurea Herbicide Bensulfuron-methyl

  • KIM JEONG-DONG;LEE CHOUL-GYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.52-56
    • /
    • 2006
  • The effect of bensulfuron-methyl on the nontargeted cyanobacteria was greater on A. variabillis than N. commune. Both A. variabillis and N. commune were initially able to utilize low concentrations of the herbicide, bensulfuron-methyl, whereas higher concentrations of bensulfuron-methyl or the hydrolyzed products of the herbicide were found to be toxic. Growth and photosynthesis inhibitions of over $50\%$ were observed, when 8 to 10 ppm of the herbicide was applied. Nitrogenase activities of the cyanobacteria were decreased by $94-98\%$ in A. variabillis and by $85-86\%$ in N. commune after 24 h of incubation with 10 ppm and 20 ppm of bensulfuron-methyl. Nitrogenase activities were also inhibited by the addition of ammonium salts as low as 0.05 mM. Furthermore, the toxic effect of the herbicide was the highest at pH 4-6, showing approximately $42-60\%$ toxicity, whereas much lower toxicity $(9-28\%)$ was observed at higher pH of 7-10, due to base-catalyzed hydrolysis of bensulfuron-methyl.

Virtual Screening of Tubercular Acetohydroxy Acid Synthase Inhibitors through Analysis of Structural Models

  • Le, Dung Tien;Lee, Hyun-Sook;Chung, Young-Je;Yoon, Moon-Young;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.947-952
    • /
    • 2007
  • Mycobacterium tuberculosis is a pathogen responsible for 2-3 million deaths every year worldwide. The emergence of drug-resistant and multidrug-resistant tuberculosis has increased the need to identify new antituberculosis targets. Acetohydroxy acid synthase, (AHAS, EC 2.2.1.6), an enzyme involved in branched-chain amino acid synthesis, has recently been identified as a potential anti-tuberculosis target. To assist in the search for new inhibitors and “receptor-based” design of effective inhibitors of tubercular AHAS (TbAHAS), we constructed four different structural models of TbAHAS and used one of the models as a target for virtual screening of potential inhibitors. The quality of each model was assessed stereochemically by PROCHECK and found to be reliable. Up to 89% of the amino acid residues in the structural models were located in the most favored regions of the Ramachandran plot, which indicates that the conformation of each residue in the models is good. In the models, residues at the herbicide-binding site were highly conserved across 39 AHAS sequences. The binding mode of TbAHAS with a sulfonylurea herbicide was characterized by 32 hydrophobic interactions, the majority of which were contributed by residue Trp516. The model based on the highest resolution X-ray structure of yeast AHAS was used as the target for virtual screening of a chemical database containing 8300 molecules with a heterocyclic ring. We developed a short list of molecules that were predicted to bind with high scores to TbAHAS in a conformation similar to that of sulfonylurea derivatives. Five sulfonylurea herbicides that were calculated to efficiently bind TbAHAS were experimentally verified and found to inhibit enzyme activity at micromolar concentrations. The data suggest that this time-saving and costeffective computational approach can be used to discover new TbAHAS inhibitors. The list of chemicals studied in this work is supplied to facilitate independent experimental verification of the computational approach.

Differential herbicide response of sulfonylurea-resistant Monochoria vagnalis accessions to sulfonylurea herbicides (서로 다른 지역에서 채집된 Sulfonylurea계 제초제 저항성 물달개비의 제초제 반응 차이)

  • Park, Tae-Seon;Lee, In-Yong;Park, Jae-Eup;Oh, Se-Mun
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.269-275
    • /
    • 2007
  • Four sulfonylurea(SU)-resistant Monochoria vaginalis(M. vaginalis) accessions were tested for levels of resistance to four SU herbicides which have been widely using in paddy fields of Korea, based on whole plant response and sensitivity of the target enzyme, acetolactate synthase(ALS). The resistant Naju, Nonsan and Gimje accessions were not affected to the survival by treatment with recommended dose of all SU herbicides tested. The $GR_{50}$ values for the Naju, Nonsan and Gimje accessions were 8- to 33-fold, 8- to 30-fold and 7- to 32-fold higher to recommended doses of all SU herbicides tested than the susceptible Cheongdo accession, respectively. However, the $GR_{50}$ values for Kimhae accession displayed an intermediate response and was only 4-to 13-fold more resistant than the susceptible accession. The ALS $I_{50}$ values for the Naju, Nonsan and Gimje accessions were 25- to 66-fold, 9- to 26-fold and 10- to 24-fold higher to recommended doses of all SU herbicides tested than the susceptible Cheongdo accession, respectively. However, the $I_{50}$ value for Kimhae accession was 4- to 9-fold more resistant than the susceptible accession, as determined by $I_{50}$ values of ALS.