• Title/Summary/Keyword: Sulfate source

Search Result 293, Processing Time 0.041 seconds

Studies on the Petroleum hydrocarbon-utilizing Micro-organisms(Part 2) - On the Production of Single Cell Protein from Petroleum hydrocarbon with a yeast strain - (석유 탄화수소 이용 미생물에 관한 연구 (제 2 보) - 효모를 이용한 석유탄화수소로 부터 단백질 생산에 관하여 -)

  • Lee, Ke-Ho;Shin, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.14 no.1
    • /
    • pp.9-18
    • /
    • 1971
  • In order to obtain basic information on the production of single cell protein from petroleum, more than 400 yeast strains were isolated from various soil samples in Korea utilizing petroleum hydrocarbon as the sole carbon source. A yeast strain showing the highest cell yield among the isolated strains was selected and identified. The optimal culture condition was searched in the flasks shaken throughout the procedure. And the growing characteristics for the selected yeast strain and chemical analysis of the yeast cell component were carried out. The results obtained were as follows: 1. The selected yeast strain was identified as Candida curvata and we named it Candida curvata-SNU 70. 2. The composition of the medium proposed for the present yeast strain is: Light Gas Oil 30ml, Urea 400mg, Ammonium sulfate 100mg, Potasium phosphate (monobasic) 670mg, Sodium phosphate (dibasic) 330mg, Magnesium sulfate 500mg, Calcium carbonate 3g, Yeast extract 50mg, Tween 20 0.05ml, Tap water 1,000ml. 3. Other culture conditions employed for the yeast were pH 5.5-7.0, temp. $30^{\circ}C$ under an affluent aerobic state. 4. Addition of light gas oil in portions to the culture media as the growth proceeded was more effective, especially in the cultivation on the higher oil concentration media. 5. Studies on the propagation of the yeast cells in the light gas oil medium revealed that the yeast has the lag phase lasted 16 hours and the logarithmic growth phase covered 16 to 28 hours. The specific growth rate was about $0.22\;hr^{-1}$ and doubling time was 3.2 hrs. during the logarithmic growth phase. 6. Under the cultural condition employed, the cell yield against the amount of light gas oil (wt%) was 16.1% and the protein content of the dried yeast cells was 48.4%.

  • PDF

In-situ Treatment for the Attenuation of Phosphorus Release from Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 In-situ 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Kang, Sung-Won;Kim, Young-Im
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.563-572
    • /
    • 2006
  • In order to propose optimum in-situ treatment for reducing phosphorous release from sediment of stationary lakes, a series of column tests were performed. The sediment used in experiment was very fine clay with a mean grain site $7.7{\phi}$ and high $C_{org}$ contents(2.4%). Phosphorous releases were evaluated in two ways : in lake water(with microbial effect) and in distilled water(without microbial effect). As in-situ capping material, sand and loess were used while Fe-Gypsum and $SiO_2$-Gypsum were used for in-situ chemical treatment. In case of lake water considering the effect of microorganism, phosphorous concentration rapidly decreased in the early stage of experiment but it was gradually increased after 10 days. Flux of phosphorous release for control was $3.0mg/m^2{\cdot}d$. Whereas, those for sand layer capping(5 cm) and loess layer capping(5 cm) were $2.5mg/m^2{\cdot}d\;and\;1.8mg/m^2{\cdot}d$, respectively because the latter two were not consolidated sufficiently. For Fe-gypsum and $SiO_2$-gypsum the fluxes were $1.4mg/m^2{\cdot}d$ which meant that reduction efficiency of phosphorous release was more than 40% higher than that of control. The case capping with complex layer was $1.0mg/m^2{\cdot}d$, which showed high reduction efficiency over 60%. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment reduced release of Phosphorus from the sediments. Gypsum acted as a slow-releasing source of sulphate in sediment, which enhanced the activity of SRB(sulfate reducing bacteria) and improved the overall mineralization rate of organic matter.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF

Effect of Phytogenic Feed Additives in Soybean Meal on In vitro Swine Fermentation for Odor Reduction and Bacterial Community Comparison

  • Alam, M.J.;Mamuad, L.L.;Kim, S.H.;Jeong, C.D.;Sung, H.G.;Cho, S.B.;Jeon, C.O.;Lee, K.;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.266-274
    • /
    • 2013
  • The effect of different phytogenic feed additives on reducing odorous compounds in swine was investigated using in vitro fermentation and analyzed their microbial communities. Soybean meal (1%) added with 0.1% different phytogenic feed additives (FA) were in vitro fermented using swine fecal slurries and anaerobically incubated for 12 and 24 h. The phytogenic FAs used were red ginseng barn powder (Panax ginseng C. A. Meyer, FA1), persimmon leaf powder (Diospyros virginiana L., FA2), ginkgo leaf powder (Ginkgo biloba L., FA3), and oregano lippia seed oil extract (Lippia graveolens Kunth, OL, FA4). Total gas production, pH, ammonianitrogen ($NH_3$-N), hydrogen sulfide ($H_2S$), nitrite-nitrogen ($NO_2{^-}$-N), nitrate-nitrogen ($NO_3{^-}$-N), sulfate (${SO_4}^{--}$), volatile fatty acids (VFA) and other metabolites concentration were determined. Microbial communities were also analyzed using 16S rRNA DGGE. Results showed that the pH values on all treatments increased as incubation time became longer except for FA4 where it decreased. Moreover, FA4 incubated for 12 and 24 h was not detected in $NH_3$-N and $H_2S$. Addition of FAs decreased (p<0.05) propionate production but increased (p<0.05) the total VFA production. Ten 16S rRNA DGGE bands were identified which ranged from 96 to 100% identity which were mostly isolated from the intestine. Similarity index showed three clearly different clusters: I (FA2 and FA3), II (Con and FA1), and III (FA4). Dominant bands which were identified closest to Eubacterium limosum (ATCC 8486T), Uncultured bacterium clone PF6641 and Streptococcus lutetiensis (CIP 106849T) were present only in the FA4 treatment group and were not found in other groups. FA4 had a different bacterial diversity compared to control and other treatments and thus explains having lowest odorous compounds. Addition of FA4 to an enriched protein feed source for growing swine may effectively reduce odorous compounds which are typically associated with swine production.

Simultaneous Removal Characteristics of NOx, SOx from Combustion Gases using Pulse Corona induced Plasma Chemical Processing (PPCP에 의한 연소가스 중 NOx, SOx 동시제거 특성)

  • Park, Jae-Yoon;Koh, Yong-Sul;Jung, Jang-Gun;Kim, Jung-Dal
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.211-216
    • /
    • 2000
  • In this paper, experimental investigations were carried out to remove NOx, SOx simultaneously from a simulated combustion flue gas [$NO(0.02%)-SO_2(0.08%)-CO_2-Air-N_2$] by using a pulse corona induced plasma chemical processing. Discharge domain of wire-cylindrical plasma reactor was separated from a gas flow duct to avoid unstable discharge by aerosol particle deposited on discharge electrode and grounded electrode. The NOx, SOx removal was experimentally investigated by a reaction induced to ammonium nitrate, ammonium sulfate using a low price of aqueous NaOH solution and a small quantity of ammonia. Volume percentage of aqueous NaOH solution used was 20% and $N_2$ flow rate was $2.5{\ell}/min$ for bubbling aqueous NaOH solution. Ammonia gas(l4.82%) balanced by argon was diluted by air and was introduced to a main simulated flue gas duct through $NH_3$ injection system which was in downstream of reactor. The $NH_3$ molecular ratio(MR) was determined based on [$NH_3$] and [$NO+SO_2$]. MR is 1.5. The NOx removal rates increased in the order of DC, AC and pulse, but SOx removal rates was not significantly effected by source of electricity. The NOx removal rate slightly decreased with increasing initial concentration. but SOx removal rate was not significantly affected by initial concentration. The NOx, SOx removal rates decreased with increasing gas flow rate.

  • PDF

Studies on the Artificial Cultivation of Morchella esculenta in Ascomycetes (자낭균 곰보(Morchella esculenta)버섯의 인공재배에 관한 연구)

  • Kim, Han-Kyoung;Lee, Kang-Hyo;Cheong, Jong-Chun;Jhune, Chang-Sung;Seok, Sun-Ja;Jang, Kab-Yeul
    • Journal of Mushroom
    • /
    • v.7 no.1
    • /
    • pp.9-21
    • /
    • 2009
  • This study was executed in an attempt to investigate a artificial requisites of fruitbody occurrence. Environmental requirements on habitat for fruitbody occurrence of collected cultures resulted in leading to $13-16^{\circ}C$ and 75% relative humidity, and requiring silt loam of soil texture which had more nutritional substances than a dry field. Optimal temperature was $25^{\circ}C$, medium PDB, and pH 5.0 in cultural conditions. Mannose required of 5% in ASI 59002, 59003, 59004, but 3% in ASI 59001 was selected as optimum carbon source. The substrates stimulating sclerotium formation were cotton waste, or cotton waste + oak sawdust (mixture ratio of 8:2), which had 20% additive of wheat barn respectively. Sclerotium was formed well in the substrate adjusted chemical properties by applying 2% of calcium sulfate. Sclerotium formation was the most effective in the treatment of peat moss + oak sawdust (mixture ratio of 5:5) + 30% of wheat barn.

  • PDF

Geochemical Study on the Alluvial Aquifer System of the Nakdong River for the Estimation of River Bank Filtration (강변여과수 개발을 위한 낙동강 충적층 지하수의 지구화학적 특성연구)

  • 김건영;고용권;김천수;김형수;김성이
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.83-105
    • /
    • 2003
  • Geochemical studies on the alluvial aquifer system near the Nakdong River were carried out for the basic investigation of the estimation of artificial recharge for the river bank filtration. In-situ data do not show any distinct difference between the pumping well and river. Most of waters belong to $_3$ and Ca-$SO_4$ types and show high Mn concentration. In the borehole installed with Multi-Ca-HCOPacker (MP) system, Na, Ca, Mg, $HCO_3$ contents of the groundwater are increased with depth increasing. Cl and $SO_4$ contents of the groundwater show the lowest values at the bottom level (18m depth) and Mn content is very high at the middle level (13.5 m depth) of MP system. There is no distinct difference in the ${\delta}^{18}O$ and D values and tritium content between MP, borehole and surface water samples. The sulfur isotope data indicate that the possible sulfur source is dissolution of sulfate mineral from sedimentary rock. Strontium isotope ratio shows a little differences between the pumping well and observation borehole samples. Nitrogen isotope data indicate that the nitrogen of water samples is originated from fertilizer or organic materials.

Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field

  • Park, Jun-Hong;Sonn, Yeon-Kyu;Kong, Myung-Suk;Zhang, Yong-Seon;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Rice cultivation in paddy field affects the global balance of methane ($CH_4$) as a key greenhouse gas. To evaluate a potential use of by-product gypsum fertilizer (BGF) in reducing $CH_4$ emission from paddy soil, $CH_4$ fluxes from a paddy soil applied with BGF different levels (0, 2, 4 and $8Mg\;ha^{-1}$) were investigated by closed-chamber method during rice cultivation period. $CH_4$ flux significantly decreased (p<0.05) with increasing level of BGF application. $8Mg\;ha^{-1}$ of BGF addition in soil reduced $CH_4$ flux by 60.6% compared to control. Decreased soil redox potential (Eh) resulted in increasing $CH_4$ emission through a $CO_2$ reduction reaction. The concentrations of dissolved calcium (Ca) and sulfate ion (${SO_4}^{2-}$) in soil pore water were significantly increased as the application rate of BGF increased and showed negatively correlations with $CH_4$ flux. Decreased $CH_4$ flux with BGF application implied that ${SO_4}^{2-}$ ion led to decreases in electron availability for methanogen and precipitation reaction of Ca ion with inorganic carbon including carbonate and bicarbonate as a source of $CH_4$ formation under anoxic condition. BGF application also increased rice grain yield by 16% at $8Mg\;ha^{-1}$ of BGF addition. Therefore, our results suggest that BGF application can be a good soil management practice to reduce $CH_4$ emission from paddy soil and to increase rice yield.

Characterization of Aerosol Composition, Concentration, and Sources in Bukhansan National Park, Korea (북한산국립공원 내 초미세먼지 농도 및 화학적 특성)

  • Kang, Seokwon;Kang, Taewon;Park, Taehyun;Park, Gyutae;Lee, Junhong;Hong, Je-Woo;Hong, Jinkyu;Lee, Jaehong;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.457-468
    • /
    • 2018
  • To improve understanding of the physico-chemical characteristics of aerosols in the national park and comparing the air pollution between national park and the urban area nearby national park, the aerosol characterization study was conducted in Bukhansan National Park, Seoul, from July through September 2017. Semi-continuous measurements of $PM_{2.5}$ using PILS (Particle Into Liquid System) coupled with IC (Ion Chromatography) and TOC (Total Organic Carbon) analyzer allowed quantification of concentrations of major ionic species($Cl^-$, $SO_4{^{2-}}$, $NO_3{^-}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg{^{2+}}$ and $Ca{^{2+}}$) and water soluble organic carbon (WSOC) with 30-minute time resolution. The total mass concentration of $PM_{2.5}$ was measured by T640 (Teledyne) with 5-minute time resolution. The black carbon (BC) and ozone were measured with a minute time resolution. The timeline of aerosol chemical compositions reveals a strong influence from urban area (Seoul) at the site in Bukhansan National Park. Inorganic aerosol composition was observed to be dominated by ammoniated sulfate at most times with ranging from $0.1{\sim}32.6{\mu}g/m^3$ (6.5~76.1% of total mass of $PM_{2.5}$). The concentration of ammonium nitrate, a potential indicator of the presence of local source, ranged from below detection limits to $20{\mu}g/m^3$ and was observed to be highest during times of maximum local urban (Seoul) impact. The total mass of $PM_{2.5}$ in Bukhansan National Park was observed to be 10~23% lower than the total mass of $PM_{2.5}$ in urban area (Gireum-dong and Bulgwang-dong, Seoul). In general, ozone concentration in Bukhansan National Park was observed to be similar or higher than urban sites in Seoul, suggesting additional biogenic VOCs with $NO_x$ from vehicle emission were to be precursors for ozone formation in Bukhansan National Park.

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).