• 제목/요약/키워드: Sulfate ability

검색결과 143건 처리시간 0.026초

Calcium sulfate-Hydroxyapatite 혼합재의 물성 및 치근천공 치유효과에 관한 연구 (THE PHYSICAL PROPERTIES AND HEALING EFFECT OF CALCIUM SULFATE-HYDROXYAPATITE COMPOUND ON ROOT PERFORATION)

  • 이승종;김경남
    • Restorative Dentistry and Endodontics
    • /
    • 제22권2호
    • /
    • pp.739-750
    • /
    • 1997
  • Treatment of root perforation elicits special considerations due to its blood-contaminated circumstances. It is known that conventional dental restorative materials are all leaking. Calcium sulfate is the material which react with water to become chemically set. This study, therefore, was performed to develop a new compound containing calcium sulfate and to evaluate its physical and biological characteristics. Three materials were used, IRM, calcium sulfate, calcium sulfate-hydroxyapatite compound. The composition of the calcium sulfate-hydroxyapatite compound was basically 50 % of calcium sulfate and 50 % of hydroxyapatite mixed with guajacol. The materials were mixed in conventional way and underwent four physical test procedures, setting time, solubility test, compressive strength, and marginal leakage test. All materials were evaluated under the scanning electron microscope to examine the marginal sealing ability. Animal experiment was also performed to test the materials' tissue response. Twenty-four dog's premolars were tested with either furcation perforations or apical retro-fillings. From the results, we found that calcium sulfate possess the good marginal sealing ability. However, calcium sulfate creates many voids which is caused by crystal thrusting action when it reacts with water. It seemed that the voids caused disintegration of the material which eventually lead to tissue reaction. By compounding calcium sulfate and hydroxyapatite, we were able to obtain the better physical properties but it showed larger marginal gap between the material and the root surface. Within the six weeks observation period, both IRM and calcium sulfate-hydroxyapatite compound showed good tissue responses in animal experiment. It is concluded that calcium sulfate would be the material of choice in root perforation repair, but the physical property needs to be further improved.

  • PDF

실리콘 혼합 차폐체의 개발과 성능비교 (Development and Performance Comparison of Silicon Mixed Shielding Material)

  • 정회원;민정환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권3호
    • /
    • pp.187-195
    • /
    • 2023
  • A shield was made by mixing materials such as bismuth(Bi) and barium(Ba) with silicon to evaluate its shielding ability. Bismuth was made into a shield by mixing a bismuth oxide(Bi2O3) colloidal solution and a silicon base and applied to a fibrous fabric, and barium was made by mixing lead oxide(PbO) and barium sulfate(BaSO4) with a silicon curing agent and solidifying it to make a shield. The test was conducted according to the lead equivalent test method for X-ray protective products of the Korean Industrial Standard. The experiment was conducted by increasing the shielding body one by one from the test condition of 60 kVp, 200 mA, 0.1sec and 100 kVp, 200 mA, 0.1 sec. At 60 kVp, 2 lead oxide-barium sulfate shields, 2 bismuth oxide 1.5 mm shields, and 5 bismuth oxide 0.3 mm shields showed shielding ability equal to or higher than that of lead 0.5 mm. At 100 kVp, 2 lead oxide-barium sulfate shields and 2 bismuth oxide 1.5 mm shields showed shielding ability equal to or higher than that of lead 0.5 mm. It was confirmed that when using 2 pieces of lead oxide-barium sulfate and 1.5 mm of bismuth oxide, respectively, it has shielding ability equivalent to that of lead. Bismuth oxide and lead oxide-barium sulfate are lightweight and have excellent shielding ability, thus they have excellent properties to be used as an apron for radiation protection or other shielding materials.

Microbial Subversion of Heparan Sulfate Proteoglycans

  • Chen, Ye;Gotte, Martin;Liu, Jian;Park, Pyong Woo
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.415-426
    • /
    • 2008
  • The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.

분광광도법에 의한 제제중 Gentamicin Sulfate의 정량에 관한 연구 (Studies on the Spectrophotometric Determination of Gentamicin Sulfate and its Preparations)

  • 이진호;양호석;이윤중
    • 약학회지
    • /
    • 제27권1호
    • /
    • pp.45-52
    • /
    • 1983
  • The ability of gentamicin to form a stable coloured complex with copper (II) in a sodium carbonate buffer solution, which had a maximum absorption at 694nm, was used for the spectrophotometric quantitative determination of gentamicin sulfate. The calibration curve obtained was linear over the range of 200~2,000mcg per ml of the sample and the analysis was very well agreed with the microbiological method.

  • PDF

저마직물의 펙티나제 정련 시 황산나트륨의 영향 (Effect of Sodium Sulfate on Ramie Fabrics Treated with Pectinase)

  • 박소영;송화순;김인영
    • 한국염색가공학회지
    • /
    • 제22권3호
    • /
    • pp.220-228
    • /
    • 2010
  • This study examines the scouring effect of pectinase on ramie fabric and influence of sodium sulfate as an activator for pectinase. The scouring effects were measured by the weight loss and pectin contents. SEM, weight loss, stiffness, moisture regain and dye ability of ramie fabric teated with pectinase/sodium sulfate were also measured. When ramie fabrics were desized with $\alpha$-amylase, the optimum conditions were pH 6.5 at $60^{\circ}C$ for 80 min with 1%(o.w.f) $\alpha$-amylase concentration. When ramie fabrics were scoured with pectinase, the optimum conditions were pH 8.5 at $55^{\circ}C$ for 30 min with 10%(o.w.f) pectinase concentration. Addition of sodium sulfate improved enzyme activity significantly, which increased proportionally with increasing sodium sulfate concentration. When 50 g/l of sodium sulfate was added, the surface became cleaner compared to the enzyme treatment without salt: weight and tensile loss, moisture regain and dyeability of the treated fabrics increased, while pectin contents and stiffness decreased. Therfore, sodium sulfate was effective activator for the pectinase treatment of flax fiber.

Competitive Adsorption and Subsequent Desorption of Sulfate in the Presence of Various Anions in Soils

  • Hong, Byeong-Deok;Lee, Kyo-seok;Lee, Dong-Sung;Rhie, Ja-Hyun;Bae, Hui-Su;Seo, IL-Hwan;Song, Seung-Geun;Chung, Doug-Young
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.541-547
    • /
    • 2016
  • In this experiment we investigated the influence of various anions including oxalic acid encountered as solution phase in soil on the adsorption and desorption of sulfate in Chungwon Bt soil. The effect of chloride and nitrate on the adsorption of sulfate was not significant, suggesting that sulfate was better able to compete for adsorption sites at concentrations studied, in contrast to the large reduction in the amount of chloride adsorbed in the presence of sulfate. The results of competition for sorption sites between sulfate and anion showed that the simultaneous presence of two anions in solution was effective in reduction of competing anion at a maximum value of adsorption, due to the similar adsorption mechanism for anion competition. Therefore, the variation in the buffer power of the acids will produce a change in the strength and amount of adsorption and the competitive ability.

Isolation and Characterization of a Dibenzothiophene Degrading Sulfate-Reducing Soil Bacterium

  • Kim, Hae-Yeong;Kim, Tae-Sung;Kim, Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 1991
  • Sulfate-reducing bacteria have been isolated from soil and their abilities to degrade dibenzothiophene (DBT) were compared with those of type cultures. Among the strains tested a soil isolate M6 showed the highest ability to degrade DBT. Isolate M6 was characterized as a mesophilic obligatory anaerobe. The morphology of the bacterium was vibrioid with the size of $0.4-0.7{\;}\mu\textrm{m}{\;}by{\;}1.0-1.5{\;}\mu\textrm{m}$. Gram reaction was negative and nonsporulating. Desulfoviridin is present. Lactate, pyruvate, ethanol and malate supported growth of the bacterium in the presence of sulfate. Sulfate, sulfite, thiosulfate and sulfur served as electron acceptors for growth. Hydrogenase was present. The mol% of guanine and cytosine of DNA was determined as 56%. The bacterium produced viscous material. From these results, the isolate M6 was identified as Desulfovibrio desulfuricans.

  • PDF

A Microbial Consortium for the Bioremediation of Sulfate-Rich Wastewater Originating from an Edible Oil Industry

  • Pascual, Javier;Rodriguez, Alejandro;Delgado, Clara Elena;Rizo-Patron, Alejandra;Porcar, Manuel;Vilanova, Cristina
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.110-121
    • /
    • 2022
  • The effluents from industries processing vegetable oils are extremely rich in sulfates, often exceeding the maximum concentration allowed to release them to the environment. Biological sulfate reduction is a promising alternative for the removal of sulfates in this type of wastewater, which has other particularities such as an acidic pH. The ability to reduce sulfates has been widely described for a particular bacterial group (SRB: sulfate-reducing bacteria), although the reports describing its application for the treatment of sulfate-rich industrial wastewaters are scarce. In this work, we describe the use of a natural SRB-based consortium able to remove above 30% of sulfates in the wastewater from one of the largest edible oil industries in Peru. Metataxonomic analysis was used to analyse the interdependencies established between SRB and the native microbiota present in the wastewater samples, and the performance of the consortium was quantified for different sulfate concentrations in laboratory-scale reactors. Our results pave the way towards the use of this consortium as a low-cost, sustainable alternative for the treatment of larger volumes of wastewater coming from this type of industries.

하수의 화학적 응집조건 및 응집제별 응집효율 분석 (Chemical Coagulation Conditions and Efficiency of Sewage with Al(III) and Fe(III) Coagulants)

  • 박준규;전동걸;박노백;전항배
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.463-474
    • /
    • 2010
  • In this study, chemical coagulation conditions for treating combined sewer overflow(CSO) occurred during rainy season were evaluated by jar tests with aluminum sulfate[$Al_2(SO_4)_3{\cdot}17H_2O$] and ferric chloride[$FeCl_3{\cdot}6H_2O$]. The raw domestic sewage sampled from the primary sedimentation tank at a local sewage treatment plant was filtered through $150{\mu}m$ sieve before using. Point of zero charge(PZC) for various dose of aluminum sulfate occurred at pH 5.8-6.5, while for ferric chloride occurred at pH 5.3-6.0 in term of streaming current(SC) values. Charge neutralization ability of aluminum sulfate was bigger than that of ferric chloride. Optimum pH and dose of aluminum sulfate and ferric chloride were 6.2, 0.438mM and 5.8, 0.925mM, respectively. Removal efficiencies of TCOD, turbidity, SS and TP were 75, 97, 95, 96% with aluminum sulfate and 74, 96, 98, 99% with ferric chloride at their optimum coagulation conditions. More efficient removal of SS, TP and small particles was possible with ferric chloride at optimum coagulation conditions. Both SC values and COD removal started to increase where soluble phosphorus was completely removed.

알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구 (An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete)

  • 양완희;황지순;전찬수;이세현
    • 한국건축시공학회지
    • /
    • 제16권4호
    • /
    • pp.321-329
    • /
    • 2016
  • 포틀랜드 시멘트, 고로슬래그 미분말, 플라이애시를 활용한 3성분계 혼합시멘트는 해양 콘크리트 구조물의 염해내구성 확보 등의 이유로 사용이 증가하고 있다. 이에 따라 본 연구에서는 보통포틀랜드 시멘트, 고로슬래그 미분말, 플라이애시를 4:4:2로 혼합한 3성분계 시멘트에 알칼리 설페이트계 활성화제(Modified Alkali Sulfate type)를 1.5~2.0% 사용할 때, NT Build 492에 의한 염화물 확산 시험과 ASTM C 1202( KS F 2271)에 의한 염소이온 침투 저항성 시험을 이용하여 콘크리트의 염해저항성의 변화를 관찰하고자 하였다. 그 결과 알칼리 설페이트계 활성화제의 활용에 따라 Plain 대비 슬럼프는 다소 감소하는 경향을 나타냈으나 재령 2일부터 재령 7일까지의 압축강도는 17~42% 향상되었다. 또한 재령 28일에 측정한 염화물 확산 계수는 알칼리 설페이트의 활용에 따라 Plain 대비 36~56% 감소하였으며, 염소이온 침투 저항성 시험에 따른 총통과전하량은 재령 7일은 33~62%, 재령 28일은 31~48% 감소하는 결과를 나타내었다. 이는 기존의 연구결과와 마찬가지로 알칼리 활성화에 의해 고로슬래그 미분말 및 플라이애시의 반응성이 향상되어 공극이 더욱 치밀해진 효과에 의한 것으로 판단된다. 향후 이와 관련하여 장기재령의 시험체를 대상으로 한 실험과 분석이 지속적으로 이루어져야 할 것으로 판단된다.