• Title/Summary/Keyword: Suction Surface

Search Result 303, Processing Time 0.033 seconds

Diagnostics of nuclear reactor coolant pump in transition process on performance and vortex dynamics under station blackout accident

  • Ye, Daoxing;Lai, Xide;Luo, Yimin;Liu, Anlin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2183-2195
    • /
    • 2020
  • A mathematical model for the flowrate and rotation speed of RCP during idling was established. The numerical calculation method and dimensionless method were used to analyze the flow, head, torque and pressure and speed changes under idle conditions. Regularity, using the Q criterion vortex identification judgment method combined with surface flow spectrum morphology analysis to diagnose the vortex dynamic characteristics on RCP blade. On impeller blade, there is two oscillations in the pressure ratio on pressure surface in blade outlet region. The velocity on the suction surface is two times more oscillating than the inlet of blade, and there is an intersection with the velocity ratio curve on pressure surface. On blade of guide vane, the pressure ratio increases along the inlet to outlet direction, and the speed ratio decreases with the increase of idle time. There is a vortex that rotates counterclockwise on the suction surface, and the streamline on the suction surface of blade is subjected to the entrainment and blocking action of the vortex creates a large reverse flow in the main flow region. There are two vortices at the outlet of guide vane suction side and the vortices are in opposite directions.

Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I) (주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1))

  • Kuk, Keon;Lee, Joon-Sik;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

Free-Stream Turbulence Effect on the Heat (Mass) Transfer Characteristics on a Turbine Rotor Surface (자유유동 난류강도가 터빈 동익 표면에서의 열(물질)전달 특성에 미치는 영향)

  • Lee, Sang-Woo;Park, Jin-Jae;Kwon, Hyun-Goo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1442-1446
    • /
    • 2004
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is employed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiments are carried out for two free-stream turbulence intensities of 1.2% and 14.7%. The high free-stream turbulence results in more uniform distributions of heat load on the both pressure and suction surfaces and in an early boundary-layer separation on the suction surface. The heat (mass) transfer enhancement on the suction surface due to the endwall vortices is found to be relatively small under the high free-stream turbulence.

  • PDF

Effects of vortex generators on the wind load of a flat roof: A computational study

  • Zhao, Yagebai;Deng, Xiaolong;Zhang, Hongfu;Xin, Dabo;Liu, Zhiwen
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Vortex generators are commonly used in mechanical engineering and the aerospace industry to suppress flow separation owing to their advantages of simple structure, economic viability, and high level of efficiency. Owing to the flow separation of the incoming wind on the leading edge, a suction area is formed on the roof surface, which results in a lifting effect on the roof. In this research, vortex generators were installed on the windward surface of a flat roof and used to disturb to roof flow field and reduced suction based on flow control theory. Computational fluid dynamics (CFD) simulations were performed in this study to investigate the effects of vortex generators on reduce suction. It was determined that when the vortex generator was installed on the top of the roof on the windward surface, it had a significant control effect on reduce suction on the roof leading edge. In addition, the influence of parameters such as size, placement interval, and placement position of the vortex generator on the control effect of the roof's suction is also discussed.

A Experimental Study on the Performance of an Axial-Type Suction-Blowing Fan (축류형 흡배송 송풍기의 성능에 관한 실험적연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Ahn, Kook-Young;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.19-24
    • /
    • 2011
  • An experimental study was conducted to examine the effectiveness of a suction-blowing fan that could not only remove polluted air by suction but also create the air-curtain by blowing. In order to create the air-curtain, rotors were installed on the surface of the shroud. These blows fresh air into the polluted region. The fresh air is spouted backward 45o on the basis of the axial direction using a double-ducted bellmouth. In the same suction operating condition, the suction region was extended by increasing the blowing velocity. However, the increasing rate of suction region was reduced when the blowing velocity was increased steadily. Thus, an efficient blowing velocity should be determined depending on the suction operating condition. In addition, the blowing requires additional input power. In a fixed suction operating condition, the input power was linearly increased in proportion to the blowing flowrate. When the suction-blowing fan was operated in the same input power as the suction fan, the suction region was increased more than 30% based on the 0.6m/sec velocity.

Turbine Performance Degradation due to Blade Surface Roughness (블레이드 표면 거칠기에 따른 터빈 성능저하)

  • Park, Il-Young;Yun, Yong-Il;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2012-2017
    • /
    • 2003
  • This paper reports on the influence of blade surface roughness on turbine efficiency. The performance of a low speed one-stage axial turbine with roughened blade surfaces was evaluated. Sandpaper with equivalent sandgrain roughness ($k_s$) was used to roughen the blades. Efficiency (${\eta}/{\eta}_0$) decreases by 4.5 % with sandgrain size of 400 ${\mu}m$ on the stator suction surface.

  • PDF

Soil water retention and hysteresis behaviors of different clayey soils at high suctions

  • Li, Ze;Gao, You;Yu, Haihao;Chen, Bo;Wang, Long
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.373-382
    • /
    • 2022
  • Unsaturated soil at high suctions is widespread. Many civil engineering projects are related to the hydro-mechanical behavior of unsaturated soils at high suctions, particularly in arid and semiarid areas. To investigate water retention behaviors of nine clayey soils (one is classified as fat clay and the others are classified as lean clay according to the unified soil classification system), the high suction (3.29-286.7 MPa) was imposed on the specimens at zero net stress by the vapor equilibrium technique. In this paper, the effect of void ratio on the water retention behavior at high suction was discussed in detail. Validation data showed that soil types, i.e., different mineralogical compositions, are critical in the soil water retention behavior at a high suction range. Second, the hysteresis behavior at a high suction range is mainly related to the clay content and the specific surface area. And the mechanism of water retention and hysteresis behavior at high suctions was discussed. Moreover, the maximum suction is not a unique value, and it is crucial to determine the maximum suction value accurately, especially for the shear strength prediction at high suctions. If the soil consists of hydrophilic minerals such as montmorillonite and illite, the maximum suction will be lower than 106 kPa. Finally, using the area of hysteresis to quantify the degree of hysteresis at a high suction range is proposed. There was a good correlation between the area of hydraulic hysteresis and the specific surface area.

Flow Characteristics of the Boundary Layer Developing over a Turbine Blade Suction Surface (터빈 동익 흡입면에서 발달하는 경계층의 유동특성)

  • Chang, Sung Il;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.795-803
    • /
    • 2015
  • The boundary layer developing over the suction surface of a first-stage turbine blade for power generation has been investigated in this study. For three locations selected in the region where local thermal load changes dramatically, mean velocity, turbulence intensity, and one-dimensional energy spectrum are measured with a hot-wire anemometer. The results show that the suction-surface boundary layer suffers a transition from a laminar flow to a turbulent one. This transition is confirmed to be a "separated-flow transition", which usually occurs in the shear layer over a separation bubble. The local minimum thermal load on the suction surface is found at the initiation point of the transition, whereas the local maximum thermal load is observed at the location of very high near-wall turbulence intensity after the transition process. Frequency characteristics of turbulent kinetic energy before and after the transition are understood clearly from the energy spectrum data.

Drag reduction in channel flow using stationary distributed blowing and suction (고정된 분포 분사/흡입을 통한 채널 유동의 저항 감소)

  • Kim, Joo-Hyun;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.195-198
    • /
    • 2006
  • The possibility of skin friction reduction in laminar channel flow is investigated when the flow is subjected to stationary distributed surface blowing and suction. Blowing and suction provided at the channel walls is steady in time but varies as a sine function along the streamwise direction. The skin friction changes depending on the wavelength and amplitude of the actuation. Especially, the skin friction is reduced below that of fully developed laminar flow as the wavelength decreases and amplitude increases. The optimal wavelength of producing minimum skin friction is $\pi/2{\delta}$, where $\delta$ is the channel half-height It is observed that the distributed blowing and suction induces strong negative Reynolds shear stress in the near-wall region at the end of the suction part.

  • PDF