Acknowledgement
This research was supported by the National Natural Science Foundation of China (No. 51878131), the Fundamental Research Funds for the Central Universities (No. 2572019BJ06)
References
- Abohela, I., Hamza, N. and Dudek, S. (2013), "Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines", Renew. Energy. 50, 1106-1118. https://doi.org/10.1016/j.renene.2012.08.068.
- Baetke, F., Werner, H. and Wengle, H. (1990), "Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners", J. Wind Eng. Ind. Aerod., 35(1-3), 129-147. https://doi.org/10.1016/0167-6105(90)90213-V.
- Beyers, J.H.M., Sundsbo, P.A. and Harms, T.M. (2004), "Numerical simulation of three-dimensional, transient snow drifting around a cube", J. Wind Eng. Ind. Aerod., 92(9) 725-747. https://doi.org/10.1016/j.jweia.2004.03.011.
- Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmosp. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019.
- Browne, M.T.L., Gibbons, M.P.M., Gamble, S. and Galsworthy, J. (2013), "Wind loading on tilted roof-top solar arrays: The parapet effect", J. Wind Eng. Ind. Aerod., 123 202-213. https://doi.org/10.1016/j.jweia.2013.08.013.
- Corke, T.C., Nagib, H.M. (1979), "Wind loads on a building model in a family of surface layers", J. Wind Eng. Ind. Aerod., 5, 159-177. https://doi.org/10.1016/0167-6105(79)90029-1.
- Cheng, Z., Lou, W., Sun, B. and Tang, J. (2000), "Wind load on roof structures and mechanism of wind-induced damages", J. Build. Struct., 21(04), 39-47.
- Gao, F., Wang, X. and Zhang, H. (2016), "A research on boundary layer control of asymmetric supersonic flow past micro-vortex generator", J. Air Force Eng. Univ. Nat. Sci. Edit., 17(6), 6-11.
- Gullbrekken, L., Uvslokk, S., Kvande, T., Pettersson, K. and Time, B. (2018), "Wind pressure coefficients for roof ventilation purposes", J. Wind Eng. Ind. Aerod., 175 144-152. https://doi.org/10.1016/j.jweia.2018.01.026.
- Holscher, N. and Niemann, H.J. (1998), "Towards quality assurance for wind tunnel tests: A comparative testing program of the Windtechnologische Gesellschaft", J. Wind Eng. Ind. Aerod., 74-76, 599-608. https://doi.org/10.1016/S0167-6105(98)00054-3.
- Lee, M., Lee, S.H., Hur, N. and Choi, C.K. (2010), "A numerical simulation of flow field in a wind farm on complex terrain", Wind Struct., 13(4), 375-383. https://doi.org/10.12989/was.2010.13.4.375
- Lin, J.C. (2002), "Review of research on low-profile vortex generators to control boundary-layer separation", Progress in Aerospace Sciences. 38(4), 389-420. https://doi.org/10.1016/S0376-0421(02)00010-6.
- Manolesos, M. and Voutsinas, S.G. (2015), "Experimental investigation of the flow past passive vortex generators on an airfoil experiencing three-dimensional separation", J. Wind Eng. Ind. Aerod., 142 130-148. https://doi.org/10.1016/j.jweia.2015.03.020.
- Moravej, M., Irwin, P., Zisis, I., Chowdhury, A.G. and Hajra, B. (2017), "Effects of roof height on local pressure and velocity coefficients on building roofs", Eng. Struct., 150 693-710. https://doi.org/10.1016/j.engstruct.2017.07.083.
- Richards, P.J., Hoxey, R.P. and Short, L.J. (2001), "Wind pressures on a 6 m cube", J. Wind Eng. Ind. Aerod., 89(14), 1553-1564. https://doi.org/10.1016/S0167-6105(01)00139-8
- Oliveira N.L.D. and Fernando M.D.S. (2018), "Simulation and measurements of wind interference on a solar chimney performance", J. Wind Eng. Ind. Aerod., 179, 135-145. https://doi.org/10.1016/j.jweia.2018.05.020.
- Rizzo, F. and Ricciardelli, F. (2017), "Design pressure coefficients for circular and elliptical plan structures with hyperbolic paraboloid roof", Eng. Struct., 139 153-169. https://doi.org/10.1016/j.engstruct.2017.02.035.
- Shan, W., Tamura, Y., Yang, Q. and Li, B. (2018), "Effects of curved slopes, high ridges and double eaves on wind pressures on traditional Chinese hip roofs", J. Wind Eng. Ind. Aerod., 183 68-87. https://doi.org/10.1016/j.jweia.2018.10.010.
- Stillfried, F.V., Wallin, S. and Johansson, A. (2010). "An improved passive vortex generator model for flow separation control", Flow Control Conference. https://doi.org/10.2514/6.2010-5091.
- Xin, D., Zhang, H. and Ou, J. (2018), "Experimental study on mitigating vortex-induced vibration of a bridge by using passive vortex generators", J. Wind Eng. Ind. Aerod., 175 100-110. https://doi.org/10.1016/j.jweia.2018.01.046.