• Title/Summary/Keyword: Succinic acid fermentation

Search Result 200, Processing Time 0.022 seconds

푸마르산 발효액을 이용한 숙산산 생산

  • Mun, Se-Gwon;Wi, Yeong-Jung;Yun, Jong-Seon;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.201-203
    • /
    • 2003
  • In this study, succinic acid production using fumaric acid fermentation broth was investigated. We tried to produce fumaric aicd from glucose by Rhizopus oryzae and then convert fumaric acid fermentation broth into succinic acid by Enterococcus faecalis RKY1. Conversion ratio of succinic acid was more than 0.90 g/g-fumaric acid. Furthermore, we optimized conditions of conversion from fermentation broth. As a result, when fumaric acid fermentation broth for succinic acid production was employed, we could decrease the amount used of glycerol and yeast extract.

  • PDF

Succinic Acid Production by Continuous Fermentation Process Using Mannheimia succiniciproducens LPK7

  • Oh, In-Jae;Lee, Hye-Won;Park, Chul-Hwan;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.908-912
    • /
    • 2008
  • To achieve a higher succinic acid productivity and evaluate the industrial applicability, this study used Mannheimia succiniciproducens LPK7 (knock-out: ldhA, pflB, pta-ackA), which was recently designed to enhance the productivity of succinic acid and reduce by-product secretion. Anaerobic continuous fermentation of Mannheimia succiniciproducens LPK7 was carried out at different glucose feed concentrations and dilution rates. After extensive fermentation experiments, a succinic acid yield and productivity of 0.38 mol/mol and 1.77 g/l/h, respectively, were achieved with a glucose feed concentration of 18.0 g/l and $0.2\;h^{-1}$ dilution rate. A similar amount of succinic acid production was also produced in batch culture experiments. Therefore, these optimal conditions can be industrially applied for the continuous production of succinic acid. To examine the quantitative balance of the metabolism, a flux distribution analysis was also performed using the metabolic network model of glycolysis and the pentose phosphate pathway.

Application Of Reactive Extraction to Biologica1 Production of Succinic Acid (생물학적 숙신산 생산을 위한 반응추출공정의 적용)

  • Hong, Yeon-Ki;Huh, Yun-Suk;Hong, Won-Hi
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.142-148
    • /
    • 2005
  • Succinic acid is an important material in industries producing biodegradable polymers, food and pharmaceutical products, and green solvents. Furthermore, succinate fermentation is a novel process due to the fixation of $CO_2$ into succinate during fermentation. However, the impurities in fermentation broth make the separation process of succinic acid be difficult. Reactive extraction has been proposed to be an effective primary separation step of succinic acid from dilute fermentation broth. This article presents the principles of reactive extraction along with the characteristics of tertiary amino extractants. A brief overview on the current research on reactive extraction of succinic acid is presented. Finally, for the succinic acid separation, reactive extraction as a primary step is suggested in the whole downstream process for succinic acid from fermentation broth.

The Effect of Protectants and pH Changes on the Cellular Growth and Succinic Acid Yield of Mannheimia succiniciproducens LPK7

  • Oh, Young-Hoon;Oh, In-Jae;Jung, Chang-Kyou;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1677-1680
    • /
    • 2010
  • The harmful effects of succinic acid and oxidative stress on cell growth were determined during batch fermentation with Mannheimia succiniciproducens LPK7, a powerful succinic acid-producing strain, and conditions were optimized to minimize these effects. In terms of toxicity, the cell concentration decreased as the concentration of succinic acid increased. By changing the pH from 6.5 to 7 during fermentation, the cell concentration increased by about 10%, and the level of succinic acid production was 6% higher than that of the control. In addition, by introducing protectants, the cell concentration increased by about 10%, and the level of succinic acid produced was increased by 3%.

Effect of Salts on the Extraction Characteristics of Succinic Acid by Predispersed Solvent Extraction

  • Kim, Bong-Seock;Hong, Yeon-Ki;Hong, Won-Hi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.207-211
    • /
    • 2004
  • Predispersed solvent extraction (PDSE) of succinic acid with Tri-n-octylamine (TOA) dissolved in 1-octanol from aqueous solutions of 50 g/L succinic acid was examined. It was found that the equilibrium data in PDSE was equal to that in conventional solvent extraction in spite of the lack of mechanical mixing in PDSE. The influence of salts on succinic acid extraction and the stability of colloidal liquid aphrons (CLAs) were also investigated. Results indicated that in the presence of sodium chloride, less succinic acid was extracted by CLAs and the stability of CLAs decreased. However, the stability of CLAs was sufficient to make PDSE practically applicable to real fermentation broth, considering the concentration range of salts in the fermentation process for succinic acid.

Succinic Acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 Growing on Galactose, Galactose/Glucose, and Galactose/Lactose

  • Lee, Pyung-Cheon;Lee, Sang-Yup;Chan, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1792-1796
    • /
    • 2008
  • Succinic acid-producing Anaerobinspirillum succiniciproducens was anaerobically grown on galactose, galactose/glucose, or galactose/lactose in order to study its galactose fermentation. Unlike a previous report, A. succiniciproducens was found to efficiently metabolize galactose as the sole carbon source at a rate of 2.4 g/g-DCW/h and produced succinic acid with as high a yield of 87% as with using glucose. When glucose and galactose were present, A. succiniciproducens metabolized both sugars simultaneously. Furthermore, when lactose and galactose coexisted, lactose did not inhibit the galactose fermentation of A. succiniciproducens. Therefore, co-utilization of galactose and other sugars can improve the productivity and economy of bio-based succinic acid processes.

Optimization and Scale-Up of Succinic Acid Production by Mannheimia succiniciproducens LPK7

  • Oh, In-Jae;Kim, Dong-Hyun;Oh, Eun-Kyoung;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.167-171
    • /
    • 2009
  • The effects of culture conditions on succinic acid production and its possible scale-up have been studied. Mannheimia succiniciproducens LPK7, engineered for enhanced production of succinic acid and reduced by-product secretion, was used for the experiments. Mannheimia succiniciproducens LPK7 is a knock-out strain of wild type deficient in the ldhA, pflB, and pta-ackA genes, and is derived from Mannheimia succiniciproducens MBEL55E. Process optimization of factors including optimal temperature, pH, carbon source, and nitrogen source was performed to enhance the production of succinic acid in flasks. To observe scale-up effects, batch fermentation was carried out at various working volumes. At a working volume of 7.0 l, the final succinic acid concentration and yield were 15.4g/l and 0.86g/g. This result shows similar amount of succinic acid obtained in lab-scale fermentation, and it is possible to scale up to larger fermentors without major problems.

Biological conversion of biomass to succinic acid

  • Lee, Pyeong-Cheon;Lee, U-Gi;Lee, Sang-Yeop;Jang, Yong-Geun;Jang, Ho-Nam
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.227-230
    • /
    • 2000
  • Batch cultivations of Anaerobiospirillum succiniciproducens have been systematically studied for the economical production of succinic acid from wood hydrolysate with corn steep liquor(CSL) as a nitrogen source. CSL was found to be an alternative complex nitrogen source for A. succiniciproducens when glucose and wood hydrolysate were used as carbon sources. Compared with polypeptone and/or yeast extract, CSL had similar effects on fermentation performance such as succinic acid yield and a ratio of succinic acid to acetic acid in the fermentation of wood hydrolysate as well as glucose. This means that succinic acid can be produced more economically from wood hydrolysate and CSL than relatively expensive carbon and nitrogen sources. Besides its low cost, the alternative medium served as a green technology for succinic acid production because it gives a net-zero effect on global warming.

  • PDF

Enhanced Production of Succinic Acid by Actinobacillus succinogenes using the Production Medium Supplemented with Recombinant Carbonic Anhydrases (재조합 탄산무수화 효소 첨가 생산배지를 이용한 Actinobacillus succinogenes 유래의 숙신산 생산성 향상)

  • Park, Sang-Min;Eum, Kyuri;Kim, Sangyong;Jeong, Yong-Seob;Lee, Dohoon;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Succinic acid, a representative biomass-derived platform chemical, is a major fermentation product of Actinobacillus succinogenes. It is well known that carbon dioxide is consumed during the succinate fermentation, but the biochemical mechanism behind this phenomenon is not yet understood well. In this study, it was found that the addition of carbonic anhydrase (CA)s into media significantly enhances the succinic acid production by A. succinogenes during the fermentation supplied with carbon dioxide. It is likely that the (bi) carbonate produced by the CA activity from gaseous carbon dioxide is favoured by A. succinogenes for consumption and utilization. Therefore, the $MgCO_3$ requirement could be significantly reduced without compromising the succinate productivity. Furthermore, because of too high price of the commercial carbonic anhydrase, it was undertaken to economically overproduce a cyanobacterial carbonic anhydrase by the use of a recombinant Pichia pastoris. An expression vector system was constructed with the carbonic anhydrase gene PCR-cloned from Cyanobacterium Synechocystis sp., and introduced into P. pastoris for fermentation studies. About 95.9 g/L of succinic acid was produced in the production medium with 30 ppm of carbonic anhydrase, approximately 2 fold higher productivity compared to the parallel process with no supplementation of the enzyme. It is expected that this method can provide a valuable way of overcoming inefficiencies inherent in gas supply during $CO_2$-based bioprocesses like succinic acid fermentation.

Effect of Bamboo (Pseudosasa japonica Makino)Leaves on the Physicochemical Properties of Dongchimi (대나무(이대)잎이 동치미의 발효 중 이화학적 특성에 미치는 영향)

  • 김미정;장명숙
    • Korean journal of food and cookery science
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of bamboo(Idae) leaves on the taste and preservation of Dongchimi. Dongchimi was prepared by the method described in the literatures and fermented at 10$^{\circ}C$ for 75 days. The amounts of bamboo leaves used to cover the Donchimi was 1, 3, 5 and 7% of radish weight. Total vitamin C content increased gradually in the initial stage of the fermentation periods, and then it decreased gradually. Regardless of the amount of bamboo leves, the reducing sugar content increased gradually from the initial stage of fermentation increased rapidly after 8 days of fermentation. As the amount of bamboo leaves increased, the reducing sugar content was retained longer, which reflected the retardation of Dongchimi fermentation. The free amino acid contents in all of the Dongchimi samples were in order of arginine > glutaric acid > aspartic acid > alanine at the initial period of fermentation, but the order changed to arginine > alanine > glutamic acid > valine as fermentation proceeded over 23 days. Among the five non-volatile organic acids identified, the levels of malic acid and citric acid were decreased during fermentation, while those of lactic acid, fumaric acid, and succinic acid were increased. There was a significant increase in lactic acid, succinic acid, malic acid, and citric acid contents during fermentation. The content of water soluble pectin(WSP) was higher than other pectins at the initial stages, but the content of WSP decreased as fermentation proceeded.

  • PDF