DOI QR코드

DOI QR Code

Succinic Acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 Growing on Galactose, Galactose/Glucose, and Galactose/Lactose

  • Lee, Pyung-Cheon (Department of Molecular Science and Technology and Department of Biotechnology, Ajou University) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chan, Ho-Nam (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2008.11.30

Abstract

Succinic acid-producing Anaerobinspirillum succiniciproducens was anaerobically grown on galactose, galactose/glucose, or galactose/lactose in order to study its galactose fermentation. Unlike a previous report, A. succiniciproducens was found to efficiently metabolize galactose as the sole carbon source at a rate of 2.4 g/g-DCW/h and produced succinic acid with as high a yield of 87% as with using glucose. When glucose and galactose were present, A. succiniciproducens metabolized both sugars simultaneously. Furthermore, when lactose and galactose coexisted, lactose did not inhibit the galactose fermentation of A. succiniciproducens. Therefore, co-utilization of galactose and other sugars can improve the productivity and economy of bio-based succinic acid processes.

Keywords

References

  1. Baek, C. H., K. E. Lee, D. K. Park, S. H. Choi, and K. S. Kim. 2007. Genetic analysis of spontaneous lactose-utilizing mutants from Vibrio vulnificus. J. Microbiol. Biotechnol. 17: 2046-2055
  2. Benthin, S., J. Nielsen, and J. Villadsen. 1994. Galactose expulsion during lactose metabolism in Lactococcus lactis subsp. cremoris Fd1 due to dephosphorylation of intracellular galactose 6-phosphate. Appl. Environ. Microbiol. 60: 1254-1259
  3. Burgos-Rubio, C. N., M. R. Okos, and P. C. Wankat. 2000. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Prog. 16: 305-314 https://doi.org/10.1021/bp000022p
  4. Ceron Garcia, M. C., F. G. Camacho, A. S. Miron, J. M. F. Sevilla, Y. Chisti, and E. M. Grima. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol. 16: 689-694
  5. Davis, C. P., D. Cleven, J. Brown, and E. Balish. 1976. Anaerobiospirillum, a new genus of spiral-shaped bacteria. Int. J. Syst. Bacteriol. 26: 498-504 https://doi.org/10.1099/00207713-26-4-498
  6. Gancedo, J. M. 1992. Carbon catabolite repression in yeast. Eur. J. Biochem. 206: 297-313 https://doi.org/10.1111/j.1432-1033.1992.tb16928.x
  7. Gokarn, R. R., M. A. Eiteman, and J. Sridhar. 1997. Production of succinate by anaerobic microorganisms. ACS Symp. Ser. 666: 237-26
  8. Guettler, M. V., D. Rumler, and M. K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207-216 https://doi.org/10.1099/00207713-49-1-207
  9. Guzman, S., I. Ramos, E. Moreno, B. Ruiz, R. Rodriguez-Sanoja, L. Escalante, E. Langley, and S. Sanchez. 2005. Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius. Appl. Microbiol. Biotechnol. 69: 200-206 https://doi.org/10.1007/s00253-005-1965-7
  10. Hickey, M. W., A. J. Hillier, and G. R. Jago. 1986. Transport and metabolism of lactose, glucose, and galactose in homofermentative Lactobacilli. Appl. Environ. Microbiol. 51: 825-831
  11. Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim. 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22: 1275-1281 https://doi.org/10.1038/nbt1010
  12. Kim, T. Y., H. U. Kim, J. M. Park, H. Song, J. S. Kim, and S. Y. Lee. 2007. Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol. Bioeng. 97: 657-671 https://doi.org/10.1002/bit.21433
  13. Landucci, R., B. Goodman, and C. Wyman. 1994. Methodology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks. Appl. Biochem. Biotechnol. 45-6: 677-696
  14. Lee, P. C., S. Y. Lee, and H. N. Chang. 2008. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system. J. Microbiol. Biotechnol. 18: 1252-1256
  15. Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668 https://doi.org/10.1007/s00253-002-0935-6
  16. Lee, P. C., S. Y. Lee, S. H. Hong, H. N. Chang, and S. C. Park. 2003. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol. Lett. 25: 111-114 https://doi.org/10.1023/A:1021907116361
  17. Lee, P. C., W. G. Lee, S. Kwon, S. Y. Lee, and H. N. Chang. 2000. Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl. Microbiol. Biotechnol. 54: 23-27 https://doi.org/10.1007/s002530000331
  18. Lee, P. C., W. G. Lee, S. Kwon, S. Y. Lee, and H. N. Chang. 1999. Succinic acid production by Anaerobiospirillum succiniciproducens: Effects of the $H_2/CO_2$ supply and glucose concentration. Enzyme Microb. Technol. 24: 549-554 https://doi.org/10.1016/S0141-0229(98)00156-2
  19. Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang. 1999. Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochem. 35: 49-55 https://doi.org/10.1016/S0032-9592(99)00031-X
  20. Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng. 72: 41-48 https://doi.org/10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-N
  21. Luesink, E. J., R. van Herpen, B. P. Grossiord, O. P. Kuipers, and W. M. de Vos. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789-798 https://doi.org/10.1046/j.1365-2958.1998.01111.x
  22. Lynd, L. R., C. E. Wyman, and T. U. Gerngross. 1999. Biocommodity engineering. Biotechnol. Prog. 15: 777-793 https://doi.org/10.1021/bp990109e
  23. McKinlay, J. B., C. Vieille, and J. G. Zeikus. 2007. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727-740 https://doi.org/10.1007/s00253-007-1057-y
  24. Miller, J. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York
  25. Olsson, L. and J. Nielsen. 2000. The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: Utilization of industrial media. Enzyme Microb. Technol. 26: 785-792 https://doi.org/10.1016/S0141-0229(00)00172-1
  26. Ostergaard, S., L. Olsson, M. Johnston, and J. Nielsen. 2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-1286 https://doi.org/10.1038/82400
  27. Park, J. Y., S. J. Jeong, A. R. Lee, J. Park, W. J. Jeong, and J. H. Kim. 2007. Expression of alpha-galactosidase gene from Leuconostoc mesenteroides SY1 in Leuconostoc citreum. J. Microbiol. Biotechnol. 17: 2081-2084
  28. Samuelov, N. S., R. Lamed, S. Lowe, and J. G. Zeikus. 1991. Influence of $CO_2-HCO_3^-$ - levels and pH on growth, succinate production, and enzyme-activities of Anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol. 57: 3013-3019
  29. Thakker, C., S. Bhosale, and D. Ranade. 2006. Formation of succinic acid by Klebsiella pneumoniae MCM B-325 under aerobic and anaerobic conditions. J. Microbiol. Biotechnol. 16: 870-879
  30. Wong, T. Y., H. Pei, K. Bancroft, and G. W. Childers. 1995. Diauxic growth of Azotobacter vinelandii on galactose and glucose - regulation of glucose transport by another hexose. Appl. Environ. Microbiol. 61: 430-433
  31. Zeikus, J. G., M. K. Jain, and P. Elankovan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 545-552 https://doi.org/10.1007/s002530051431

Cited by

  1. Optimization and Scale-Up of Succinic Acid Production by Mannheimia succiniciproducens LPK7 vol.19, pp.2, 2008, https://doi.org/10.4014/jmb.0807.447
  2. Kinetic Study of Organic Acid Formations and Growth of Anaerobiospirillum succiniciproducens During Continuous Cultures vol.19, pp.11, 2008, https://doi.org/10.4014/jmb.0905.05026
  3. Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol vol.33, pp.4, 2008, https://doi.org/10.1007/s00449-009-0355-4
  4. Microbial succinic acid production: Natural versus metabolic engineered producers vol.45, pp.7, 2008, https://doi.org/10.1016/j.procbio.2010.03.035
  5. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid vol.12, pp.6, 2010, https://doi.org/10.1016/j.ymben.2010.08.005
  6. Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains vol.13, pp.3, 2008, https://doi.org/10.1016/j.ymben.2011.03.004
  7. Succinate production in Escherichia coli vol.7, pp.2, 2008, https://doi.org/10.1002/biot.201100061
  8. Feed‐control development for succinic acid production with Anaerobiospirillum succiniciproducens vol.109, pp.5, 2008, https://doi.org/10.1002/bit.24387
  9. Influence of Salt Concentration and Nitrogen Source on Growth and Productivity of Anaerobiosprillum succiniciproducens vol.35, pp.10, 2008, https://doi.org/10.1002/ceat.201200101
  10. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4‐butanediol pathway in Escherichia coli vol.111, pp.7, 2008, https://doi.org/10.1002/bit.25196
  11. Recent advances in production of succinic acid from lignocellulosic biomass vol.98, pp.3, 2008, https://doi.org/10.1007/s00253-013-5319-6
  12. From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae vol.9, pp.None, 2008, https://doi.org/10.1186/s13068-016-0600-4
  13. Metabolic engineering of Mannheimia succiniciproducens for succinic acid production based on elementary mode analysis with clustering vol.12, pp.2, 2008, https://doi.org/10.1002/biot.201600701
  14. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions vol.115, pp.7, 2008, https://doi.org/10.1002/bit.26584
  15. Improved succinate production from galactose‐rich feedstocks by engineered Escherichia coli under anaerobic conditions vol.117, pp.4, 2008, https://doi.org/10.1002/bit.27254
  16. Succinate Production with Metabolically Engineered Escherichia coli Using Elephant Grass Stalk (Pennisetum purpureum) Hydrolysate as Carbon Source vol.11, pp.5, 2008, https://doi.org/10.1007/s12649-018-0524-2
  17. A role for gut microbiota in host niche differentiation vol.14, pp.7, 2008, https://doi.org/10.1038/s41396-020-0640-4
  18. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease vol.34, pp.8, 2008, https://doi.org/10.1096/fj.202000786r
  19. Bio‐based succinic acid: an overview of strain development, substrate utilization, and downstream purification vol.14, pp.5, 2020, https://doi.org/10.1002/bbb.2063
  20. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy vol.806, pp.p1, 2008, https://doi.org/10.1016/j.scitotenv.2021.150312