This study tried to suggest implications about operation direction of specialized high schools (SHS) by researching awareness of middle school students (MSS), school parents (SP), human resources directors in industrial institutions (HRDII) who will be the main users of SHS education, about entering SHS and career after graduating from SHS. Seniors of middle school, SP and HRDII in Asan, Chungnam were the subject of this survey research. The summary of the result of this study is as follow: First, MSS and SP usually hoped to enter general high schools rather than vocational education schools such as SHS, meister high schools, and MSS considered school records and SP considered aptitude and talent for the factors to choose high school. Second, MSS, SP, and HRDII recognized purposes of SHS as improvement of talent and aptitude, and getting a job. As for positive images of SHS, they recognized it as applying talent and aptitude to life early, getting good jobs easily, fast independence after graduation, and learning excellent technologies, and as for negative images of SHS, they recognized it as social prejudices and discrimination, students with bad school records enter them, disadvantages about promotion and wages, and being unfavorable for entering universities. They also recognized education of SHS as being effective for improvement of basic and executive ability and key competency, development of creative human resources, and improvement of right personality and courteous manners. Third, many MSS and SP showed intention to enter SHS if it is established in Asan. They wished to enter SHS because they would like to apply their aptitude and talent to life early, learn excellent skill, and hope for early employment, on the other hand, they did not wish to enter SHS because it was not suited for their aptitude and talent, awareness about SHS is low, it is unfavorable to enter universities, and there were social prejudices and discrimination. They also similarly hoped for getting jobs and entering universities after graduating from SHS. And the reason they wanted to get a job was usually because they want to be successful by advancing into society early, or because it is still hard to get a job even after graduate from the university, on the other hand, the reason they want to enter university is because is usually in-depth education about major and social discrimination about level of education. The ability to perform duties forms the greatest part of the employment standard that MSS, SP, and HRDII aware. MSS and SP usually hoped for industrial, home economics and housework and commercial majors in SHS, and considered aptitude and talent, the promising future, and being favorable for employment for choosing major. The reason HRDII hire SHS student was to develop student into talent of industrial institution, ability of student, and need for manpower with high school graduation level, and there were also partial answer that they can hire SHS student if they have ability to perform duties. The proposals about operation direction of SHS according to the results above are as follow: SHS should diversify major and curriculum to meet various requirements of student and parents, establish SHS admission system based on career guidance, and improve student's ability to perform duties by establishing work-based learning. The Government should organize work-to-school policy to enable practical career development of students from SHS, and promote relevant policy to reinforcing SHS education rather than quantitative evaluation such as employment rate, and cooperative support from each government departments is required to make manpower with skill related to SHS to get proper evaluation and treatment.
Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used