• Title/Summary/Keyword: Subway station platform

Search Result 152, Processing Time 0.027 seconds

A NUMERICAL ANALYSIS OF TRAIN-WIND IN THE SUBWAY TUNNEL FOR THE IMPROVEMENT OF THE OF UNDERGROUND SPACE AIR QUALITY (지하공간의 공기 질 개선을 위한 지하철 터널 내 열차풍의 수치 해석적 연구)

  • Lee, J.H.;Juraeva, M.;Jeong, S.H.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.523-528
    • /
    • 2011
  • Subway becomes more and more main transportation in major cities. Air pollution in the subway platforms is decreased; however, dust flow inside subway tunnel and train is increased by installing Platform Screen Door. Airflow inside subway tunnel is observed using computational method in this study The airflow characteristics around ventilation shafts and inside the tunnel is studied following the train movement, while the train moves from existing Miasamgeori station to Gireum station ANSYS CFX V12.0.l and ICEM CFD V12.0.l are used to compute the airflow inside the subway tunnel.

  • PDF

The Possibility and Limit of Risk Management through Technological Fix: A Case Study into the Platform Screen Door (PSD) (기술적 해결을 통한 위험관리의 가능성과 한계: 지하철 스크린도어를 중심으로)

  • Kang, Yun-Jae
    • Journal of Science and Technology Studies
    • /
    • v.10 no.2
    • /
    • pp.77-105
    • /
    • 2010
  • This essay aims to look into the possibility and limit of a technological fix with the PSD (platform screen door), which was proposed as the solution of subway risk problems. Subway risk problems may be classified into five categories-on-rail accidents, in-station accidents, platform accidents, spatial risks in underground, and risks due to a crime or terror-, and the platform accidents, which happens at the interface between the rail and the station, is the most serious and prominent. The PSD is considered as an effective technical means to prevent platform accidents. However, there remains a possibility of aggravating unexpected and invisible risks. When a fire breaks out in platforms, especially at exchange stations during the rush hour, the PSD can become a "wall of outcrying", since it may act as the "safety shutter" which killed many people in the 2003 Daegu subway disaster. This is why we need to look into the limit of a technological fix with the PSD.

  • PDF

A Comparative Study on PM10 Source Contributions in a Seoul Metropolitan Subway Station Before/After Installing Platform Screen Doors (서울시 지하철 승강장의 스크린도어 설치 전·후 PM10 오염원의 기여도 비교 연구)

  • Lee, Tae-Jung;Jeon, Jae-Sik;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.543-553
    • /
    • 2010
  • Almost five million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan. As the subway system is typically a closed environment, indoor air pollution problems frequently occurs and passengers complain of mal-health impact. Especially $PM_{10}$ is well known as one of the major pollutants in subway indoor environments. The purpose of this study was to compare the indoor air quality in terms of $PM_{10}$ and to quantitatively compare its source contributions in a Seoul subway platform before and after installing platform screen doors (PSD). $PM_{10}$ samples were collected on the J station platform of Subway Line 7 in Seoul metropolitan area from Jun. 12, 2008 to Jan. 12, 2009. The samples collected on membrane filters using $PM_{10}$ mini-volume portable samplers were then analyzed for trace metals and soluble ions. A total of 18 chemical species (Ba, Mn, Cr, Cd, Si, Fe, Ni, Al, Cu, Pb, Ti, $Na^+$, $NH_4^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${SO_4}^{2-}$) were analyzed by using an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the source of particulate matters. $PM_{10}$ for the station was characterized by three sources such as ferrous related source, soil and road dust related source, and fine secondary aerosol source. After installing PSD, the average $PM_{10}$ concentration was decreased by 20.5% during the study periods. Especially the contribution of the ferrous related source emitted during train service in a tunnel route was decreased from 59.1% to 43.8% since both platform and tunnel areas were completely blocked by screen doors. However, the contribution of the fine secondary aerosol source emitted from various outside combustion activities was increased from 14.8% to 29.9% presumably due to ill-managed ventilation system and confined platform space.

The study for thermal environment improvement at subway station platform (Part 2: Thermal environment according to supply outdoor temperature) (지하역사 승강장 열환경 개선을 위한 연구 (제2보: 도입외기온도에 따른 승강장 열환경))

  • Kim, Hoe-Ryul;Kim, Dong-Gyu;Kum, Jong-Soo;Chung, Yong-Hyun;Kim, Jong-Ryel;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.561-564
    • /
    • 2009
  • This study is to examine the possibility of pre-cooling at platform. Through measurement of the thermal environment of Bujeon Subway platforms, review the potential use of ground-water and night purge. The results of this research can improve the thermal environment pre-cooling of the design.

  • PDF

Development of a remote monitoring system for gas detection at the subway station (지하철 역내 가스 검출 원격 모니터링 시스템 구현)

  • Park, Yong-Man;Kim, Hei-Sik;Kim, Gyu-Sik;Lee, Moon-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.439-441
    • /
    • 2007
  • The seoul metropolitan subway has installed 8 lines and about 500 stations to transport 5 million passengers everyday. The underground air pollution level in the subway stations is very severe status, which is very harmful to the commutators and its personals. Although subway roles as such a massive and huge transportation system, the subway doesn't adapt yet any real-time air monitoring system. They have only some hand-held type detector equipments for monitoring air pollution. Therefore subway passengers are exposed to the harmful air pollution environment. The most harmful environmental parameters among the air pollution are known as the dust and sound noise dB level in the subway station. Because the dust is consisted of very small particles, we can't see them easily in dark condition on the platform, but it is very harmful. The monitoring system for air pollution is developed using embedded system attached with 6 different environmental sensors. This system monitors air pollution of dust sound noise, gas, temperature, humidity, inflammable gas, toxic gas in the subway ?station. The sensor unit of the ARM-CPU board and sensor transmits real time environmental data to the main server using Zigbee wireless communication module and TCP/IP network. The main control server receives and displays the real-time environmental data, and it send alarms to the personals when high level value.

  • PDF

Assessment of Airborne Bacteria and Particulate Matters Distributed in Seoul Metropolitan Subway Stations (서울시 일부 지하철역 내 분포하는 부유 세균 및 입자상 오염물질 평가)

  • Kim, Ki-Youn;Park, Jae-Beom;Kim, Chi-Nyon;Lee, Kyung-Jong
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.254-261
    • /
    • 2006
  • In activity areas of subway workers and passengers in Seoul metropolitan subway lines 1-4, mein concentrations of airborne bacteria were relatively higher in workers' bedroom and station precinct whereas concentrations of particulate matters, $PM_{10}$ and $PM_{2.5}$, were relatively higher in platform, inside train and driver's seat as compared with other activity areas. This result indicates that little correlation between airborne bacteria and particulate matters was found, which assumed that most airborne particulate matters distributed in subway consisted of mainly inorganic dust like a metal particles. Mean concentrations of $PM_{10}$ and $PM_{2.5}$ in station precinct and platform exceeded the threshold limit value ($PM_{10}:150{\mu}g/m^3,\;PM_{2.5}:65{\mu}g/m^3$) but those in station office and ticket office were below it. The genera identified in all the activity areas of subway over 5% detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium, of which Staphylococcus and Micrococcus covered over 50% of total airborne bacteria and were considered as predominant genera distributed in subway.

Fire Risk Assessment for Subway Station According to Supply and Exhaust Conditions (지하철 승강장 급배기 조건에 따른 화재 위험성 평가)

  • Kim, Ha-Young;Rie, Dong-Ho;Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.29-34
    • /
    • 2008
  • In this research, to establish the emission for the people who are clearing out, through the numerical analysis using the CFD model, the dangerousness has been investigated in the various emission conditions in a station platform. As a result of research, it is found out that the temperature variation falls between 65.37% and 74.97% to compare without installation of platform screen doors. In the addition, with the supply mode or push-pull mode, the warm current is generated in the platform so the temperature and the layer of smoke are stirred up and felled off. It will make the dangerousness when the people escape. Therefore, when the capacity of emission and the space of platform is set up, the design regards the properties of the fire emission.

Unsteady Wind Pressure Analysis on PSD Considering Subway Station Configurations (지하철 역사 형상을 고려한 PSD 비정상 풍압해석)

  • Kim, Yu-Sung;Kim, Yo-Han;Shin, Kwang-Bok;Lee, Eun-Kyu;Kim, Dong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • In this study, unsteady wind pressure analyses on platform screen door (PSD) have been conducted considering the flow intereference effects between the moving train and the configuration of subway station. The major role of PSD prevents passenger accidents, wind pressure, polluted dust and noise when the train is entering the station platform. Computational fluid dynamic method with moving gird algorithm has been adopted to accurately predict unsteady pressure levels exerted on the PSD. Closed and open type station configuration are considered. Also, wind pressure levels for passing and stopping drive motion of the entering train are presented and practically compared each other.

Characteristics of CO, CO2, and NO2 Concentrations at Subway Stations in Busan for 3 Years (2015~2017) (부산지역 지하역사의 최근 3년간(2015~2017년) CO, CO2, NO2 농도의 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.595-606
    • /
    • 2019
  • This research investigated the characteristics of CO, $CO_2$, and $NO_2$ concentrations at main subway stations in Busan. The annual mean CO concentrations at the Suyeong and Nampo stations were 0.75 ppm and 0.48 ppm, respectively. Annual $CO_2$ concentration at the Seomyeon 1- platform was 649 ppm. The $NO_2$ concentrations at the Seomyeon 2- waiting room and the Yeonsan station were 0.048 ppm and 0.037 ppm, respectively. CO concentration was highest at two times of the day, and was proportional to the number of passengers commuting to and from work. The CO and $CO_2$ concentrations were highest in winter, but $NO_2$ concentration was highest in spring. CO and $CO_2$ concentrations were highest on Saturday and lowest on Sunday. The correlation of CO and $NO_2$ concentrations measured at the subway stations with those at the ambient air quality station were highest at the Seomyeon 1 and 2- waiting room and Jeonpodong. The correlation was lowest at the Yeonsan and Yeonsandong station. The number of days when $CO_2$ concentration exceeded 700 ppm over the last three years at the Seomyeon 1- platform was 174. The findings of this research are expected to deepen understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.

Characteristic of room acoustical parameters with source-receiver distance on platform in subway stations (지하철 승강장의 음원-수음점 거리에 따른 실내음향 평가지수 특성)

  • Kim, Suhong;Song, Eunsung;Kim, Jeonghoon;Lee, Songmi;Ryu, Jongkwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.615-625
    • /
    • 2021
  • Prior to proposing appropriate standard for subway station platform, this study conducted field measurements to examine characteristics of room acoustics on platform of two subway stations. As a result of analyzing the longitudinal length of the platform, Sound Pressure Level (SPL) decreased (maximum difference : 14 dB), Reverberation Time (RT) tended to increase (maximum difference of 0.8 s ~ 1.5 s), and C50 and D50 were decreased (maximum difference: 5.9 dB ~ 9.1 dB and 31.8 % ~ 37.6 %, respectively) as measurement positions moved away from the sound source. The Interaural Cross-correlation Coefficient (IACC) did not show clear tendency, but it was lower than 0.3 in entire points. It is judged that the subway platform has non-uniform sound field characteristics due to various combinations of direct and reflective sound even though it is finished with a strong reflective material.This indicates that the room acoustic characteristics of the near and far sound field are clearly expressed depending on the source-receiver distances in the subway platform having a long flat shape with a low height compared to the length.Therefore, detailed architectural and electric acoustic design based on the characteristics of each location of speaker and sound receiver in the platform is required for an acoustic design with clear sound information at all positions of the platform.