• Title/Summary/Keyword: Substrate thickness

Search Result 1,924, Processing Time 0.032 seconds

Effects of electrode configurations on uniformity of copper films on flexible polymer substrate prepared by ECR-MOCVD (ECR-MOCVD에 의해 연성 고분자 기판에 제조된 구리막의 균일도에 전극의 형태가 미치는 영향)

  • 전법주;이중기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • Copper films were prepared by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The DC bias is connected to the electrode which placed 1∼3cm above the polymer substrate. The pulse electrical field around the electrode attracts the positive charged copper ions generated from the dissociation of copper precursor, $Cu(hfac)_2$, under ECR plasma. Condensation of supersaturated copper ions in the space between the electrode and substrate, makes it possible to deposit copper film on the polymer substrate even at room temperature. In this study, optimization of the electrode configuration was carried out in order to obtain the uniform films. The uniformity of the deposited films were closely related to the parameters of electrode geometry such as electrode shape, thickness, grid size and the spacing between electrodes. The most uniform copper film was observed with the electrode that enabled uniform electrical field distribution across the whole dimension of electrode.

The Resistivity Properties and Adhesive Strength of Cu Thin firms Fabricated by EBE Method (전자빔 증착법으로 제작한 Cu 박막의 부착력과 저항율 특성)

  • Paik, Sang-Bong;Shin, Joong-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.422-426
    • /
    • 2003
  • Cu thin films of $6000{\AA}$ thickness were deposited by Electron Beam Evaporation(EBE) method on the glass. The resistivity properties and adhesion of Cu thin films were investigated by various annealing and substrate temperature. Cu thin films were annealed in the air and vacuum condition for 10 min after the deposition. The resistivity and adhesion(the force required to separate films from substrates) was measured by 4-point probe and scratch testing. The resistivity of non-annealing Cu thin films was distinguished more substrate temperature loot than substrate temperature R.T, $200^{\circ}C$. In the case of air condition annealing, as heating temperature was increased, the resistivity was decreased. In the case of vacuum condition annealing, the resistivity was increased at heating temperature $200^{\circ}C$. The best resistivity($1.72\;{\mu}{\Omega}{\cdot}cm$) of Cu thin films was obtained by the air condition heating temperature $200^{\circ}C$ at the substrate heating temperature $100^{\circ}C$. As a result of scratch testing, adhesion was increased by annealing. And maximum adhesion had 600 gf.

  • PDF

Characterization of GaN on GaN LED by HVPE method

  • Jung, Se-Gyo;Jeon, Hunsoo;Lee, Gang Seok;Bae, Seon Min;Kim, Kyoung Hwa;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Cheon, Seong Hak;Ha, Hong Ju;Sawaki, Nobuhiko
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.128-131
    • /
    • 2012
  • The selective area growth light emitting diode on GaN substrate was grown using mixed-source HVPE method with multi-sliding boat system. The GaN substrate was grown using mixed-source HVPE system. Te-doped AlGaN/AlGaN/Mg-doped AlGaN/Mg-doped GaN multi-layers were grown on the GaN substrate. The appearance of epi-layers and the thickness of the DH was evaluated by SEM measurement. The DH metallization was performed by e-beam evaporator. n-type metal and p-type metal were evaporated Ti/Al and Ni/Au, respectively. At the I-V measurement, the turn-on voltage is 3 V and the differential resistance is 13 Ω. It was found that the SAG-LED grown on GaN substrate using mixed-source HVPE method with multi-sliding boat system could be applied for developing high quality LEDs.

A Study on the Optimum coating thickness of $TiC-A1_2O_3$ coated cemented carbide tool ($TiC-A1_2O_3$ 피복초경공구의 최적피복두께에 관한 연구)

  • 김정두
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 1988
  • The purpose of this paper is to investigate on the optimum coating thickness layer of TiC-Al$_2$O$_3$ coated cemented carbide tool. Chemical Vapor Deposition (CVD) of a thick film of TiC-A1$_2$O$_3$ on a cemented carbide produces an intermediate layer, $1.5mutextrm{m}$, 4.5${\mu}{\textrm}{m}$, 7.5${\mu}{\textrm}{m}$ 10.5${\mu}{\textrm}{m}$, 4 kind of TiC between the substrate and the $1.5mutextrm{m}$ constant thick A1$_2$O$_3$ coating. Experiments were carried out with the test relationship between coating thickness and shear angle, surface roughness, cutting force, microphotograph of crater wear, flank wear, tool life. From the experimental results, it was found that the optimum coating thickness of TiC-A1$_2$O$_3$ is 6${\mu}{\textrm}{m}$. Although the coating thickness layer 9${\mu}{\textrm}{m}$. 12${\mu}{\textrm}{m}$ have a much loger tool wear than an 3${\mu}{\textrm}{m}$, 6${\mu}{\textrm}{m}$ coating tool in cutting condition feed 0.05mm/rev, and the condition of feed 0.2mm/rev, 0.3mm/rev has upon in the shot time phenomenon of chipping.

  • PDF

A Study on the Dielectric Properties of Ferroelectric Materials (강유전체의 유전율 특성에 관한 연구)

  • Cho, Ik-Hyun;Park, Young;Jeong, Kyu-Won;Jung, Se-Min;Yi, Jun-Sin;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.287-290
    • /
    • 1998
  • It was investigated that the dielectric properties of ferroelectric materials using PZT-5A and PZT thin films. PZT-5A was 20mm diameters, 0.71mm, 0.51mm and 0.41mm thickness respectively and having c-axis preferred orientation. Electrodes(Al) were deposited by evaporation method. PZT thin film was deposited on Pt/SiO$_2$/Si substrate by RF magnetron sputtering method, and annealed at 750$^{\circ}C$ with RTA. Dielectric constants were measured automatically by computer measuring system. Dielectric constants were changed rapidly from 817 to 888 in 0.41mm thickness PZT-5A, 823 to 890 in 0.51mm and 822 to 839 in 0.71mm as the electric field grown. In the case of PZT thin film, dielectric constants were changed from 724 to 1173 in 4500${\AA}$ thickness, 721 to 1204 in 5500${\AA}$ thickness and 811 to 1407 in 7000${\AA}$ thickness.

  • PDF

Zirconium Titanate Thin FIlm Prepared by Surface Sol-Gel Process and Effects of Thickness on Dielectric Property

  • Kim, Chy-Hyung;Lee, Moon-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.741-744
    • /
    • 2002
  • Single phase of multicomponent oxide ZrTiO4 film could be prepared through surface sol-gel route simply by coating the mixture of 100 mM zirconium butoxide and titanium butoxide on $Pt/Ti/SiO_2Si(100)$ substrate, following pyro lysis at $450^{\circ}C$, and annealing it at 770 $^{\circ}C.$ The dielectric constant of the film was reduced as the film thickness decreased due to of the interfacial effects caused by layer/electrode and a few voids inside the multilayer. However, the dielectric property was independent of applied dc bias sweeps voltage (-2 to +2 V).The dielectric constant of bulk film, 31.9, estimated using series-connected capacitor model was independent of film thickness and frequency in the measurement range, but theoretical interfacial thickness, ti, was dependent on the frequency. It reached a saturated ti value, $6.9{\AA}$, at high frequency by extraction of some capacitance component formed at low frequency range. The dielectric constant of bulk ZrTiO4 pellet-shaped material was 33.7 and very stable with frequency promising as good applicable devices.

Structural and Ferroelectric Properties of PZT Thin Films Deposited on SrRuO3 Electrode Films (SrRuO3 전극 박막 위에 증착된 PZT 박막의 구조 및 강유전 특성)

  • Lee, Myung Bok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.620-624
    • /
    • 2016
  • Ferroelectric $Pb(Zr_{0.52}Ti_{0.48})O_3$ (PZT) films were deposited on SrTiO3(100) substrate by using conductive $SrRuO_3$ films as underlayer and their structural and ferroelectric properties were investigated. PZT films were grown in (00l) orientation on well lattice-matched pseudo-cubic $SrRuO_3$ films. Thickness dependence of ferroelectric and electrical properties of PZT films was investigated. PZT film with 400 nm thickness showed a remanent polarization ($P_r$) of $29.0{\mu}C/cm^2$ and coercive field ($E_c$) of 83 kV/cm, and $P_r$ decreased and $E_c$ increased with thickness reduction. The dielectric constant for PZT films showed gradual decrease with thickness reduction. Breakdown field of PZT films did not show the thickness dependence and displayed as high value as 1 MV/cm.

Numerical Analysis of Effects of Velocity Inlet and Residual Layer Thickness of Resist on Bubble Defect Formation (레지스트 잔류층 두께와 몰드 유입속도가 기포결함에 미치는 영향에 대한 수치해석)

  • Lee, Woo Young;Kim, Nam Woong;Kim, Dong Hyun;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Recently, the major trends of NIL are high throughput and large area patterning. For UV NIL, if it can be proceeded in the non-vacuum environment, which greatly simplifies tool construction and greatly shorten process times. However, one key issue in non-vacuum environment is air bubble formation problem. In this paper, numerical analysis of bubble defect of UV NIL is performed. Fluent, flow analysis focused program was utilized and VOF (Volume of Fluid) skill was applied. For various resist-substrate and resist-mold angles, effects of velocity inlet and residual layer thickness of resist on bubble defect formation were investigated. The numerical analyses show that the increases of velocity inlet and residual layer thickness can cause the bubble defect formation, however the decreases of velocity inlet and residual layer thickness take no difference in the bubble defect formation.

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

Electrical Properties of $V_{1.85}W_{0.15}O_5$ Thin Films with Thickness (두께에 따른 $V_{1.85}W_{0.15}O_5$ 박막의 전기적 특성)

  • Lee, Seung-Hwan;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.121-122
    • /
    • 2008
  • The films of the vanadium tungsten oxide, $V_{1.85}W_{0.15}O_5$, were grown on Pt/Ti/$SiO_2$/Si substrate by RF sputtering method. It was found that film crystallinity, dielectric properties, and TCR properties were strongly dependent upon the thin film thickness. As increasing of $V_{1.85}W_{0.15}O_5$ thickness, the grain size, morphology, and crystallinity increased. The dielectric constants of $V_{1.85}W_{0.15}O_5$ thin films deposited at 150nm were 71.11, with a dielectric loss of 0.015, respectively. Also, The $V_{1.85}W_{0.15}O_5$ thin films showed good TCR values of -3.45%/K.

  • PDF