• Title/Summary/Keyword: Substrate system

Search Result 2,294, Processing Time 0.036 seconds

Design and Manufacture of LTE3G / WLAN/ LTE4G Tri-band Antenna System for Mobile Communication Applications

  • Bayarmaa., O;Hong, Yong Pyo;Kim, Kab Ki
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • In this paper, we propose the method to improve the performance of the antenna system that contains three bands, such as Lte3G, WLAN and Lte4G. This antenna has an advantage that can cover the three different frequency bands 2.1GHz, 2.4GHz and 2.6GHz through one antenna design. The design and simulations are done using CST Microwave Studio 2014 program. The antenna is designed by using the FR-4 (lossy) substrate with the dielectric constant of er=4.3 and dielectric loss tangent 0.025. The substrate dimensions are the following; Thickness[h] is 1.6mm, Length is 90mm, and Width is 40mm. The ground is designed by using the PEC material with h=0.035mm. The patch is designed by using the copper with h=0.035mm. In the near future, we will fabricate the antenna, which we have designed, and then apply this antenna to the mobile communication system. And we will test this mobile communication system for the diverse environments.

Impurity analysis of Ta films using secondary ion mass spectrometry (이차이온 질량분석기를 이용한 탄탈 박막내의 불순물 분석)

  • ;;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Ta films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -125 V ($V_{s}$ = -125 V) using a non-mass separated ion beam deposition system. To investigate the effect of the negative substrate bias voltage on the impurity concentration in the Ta films, secondary ion mass spectrometry (SIMS) was used to determine impurities in the Ta films. By the SIMS depth profiles with $Cs^{+}$ cluster ion beam, high intensities of O, C and Si were clearly found in the Ta film at $V_{s}$ = 0 V, whereas these impurities remarkably decreased in the Ta film at $V_{s}$ = -125 V. Furthermore, from the SIMS result with $Cs^{+}$ and $O_2^{+}$ ion beams, it was found that applying the negative substrate bias voltage could affect individual impurity contents in the Ta films during the deposition. Discussions concerning the effect of the negative substrate bias voltage on the impurity concentration of Ta films will be described in details.

Substrate-bias voltage generator for leakage power reduction of digital logic circuits operating at low supply voltage (초저전압 구동 논리 회로의누설 전류 억제를 위한 기판 전압 발생회로)

  • Kim Gil-Su;Kim Hyung-Ju;Park Sang-Soo;Yoo Jae-Tack;Ki Hoon-Jae;Kim Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.1-6
    • /
    • 2006
  • This paper proposes substrate-bias voltage generator to reduce leakage power consumption of digital logic circuits operating at supply voltage of 0.5V. Proposed substrate-bias voltage generator is composed of VSS and VBB generator. The former circuit produces negative voltage and supplies its output voltage for VBB generator. As a result VBB generator develops much lower negative voltage than that of conventional one. Proposed circuit is fabricated using 0.18um 1Poly-6Metal CMOS process and measurement result demonstrated stable operation with substrate-bias voltage of -0.95V.

Effects of Low Temperature Annealing at Various Atmospheres and Substrate Surface Morphology on the Characteristics of the Amorphous $Ta_2O_5$ Thin Film Capacitors (여러 분위기에서의 저온 열처리와 폴리머 기판의 표면 morphology가 비정질 $Ta_2O_5$ 박막 커패시터의 특성에 미치는 영향)

  • Jo, Seong-Dong;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.509-514
    • /
    • 1999
  • Interest in the integrated capacitors, which make it possible to reduce the size of and to obtain improved electrical performance of an electronic system, is expanding. In this study, $Ta_2$O\ulcorner thin film capacitors for MCM integrated capacitors were fabricated on a Upilex-S polymer film by DC magnetron reactive sputtering and the effects of low temperature annealing at various atmospheres and substrate surface morphology on the capacitor characteristics were discussed. The low temperature($150^{\circ}C$) annealing produced improved capacitor yield irrespective of the annealing at mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably due to the change of the $Ta_2$O\ulcorner film surface by oxygen, which was explained by conduction mechanism study. Leakage current and breakdown field strength of the capacitors fabricated on the Upilex-S film were 7.27$\times$10\ulcornerA/$\textrm{cm}^2$ and 1.0 MV/cm respectively. These capacitor characteristics were inferior to those of the capacitors fabricated on the Si substrate but enough to be used for decoupling capacitors in multilayer package. Roughness Analysis of each layer by AFM demonstrated that the properties of the capacitors fabricated on the polymer film were affected by the surface morphology of the substrate. This substrate effect could be classified into two factors. One is the surface morphology of the polymer film and the other is the surface morphology of the metal bottom electrode determined by the deposition process. Therefore, the control of the two factors is important to obtain improved electrical of capacitors deposited on a polymer film.

  • PDF

Bi-axial texture analysis of Ni substrate for superconducting coated conductor using R2R XRD (R2R XRD를 이용한 초전도박막선재용 기판의 이축배향 특성 분석)

  • Ha, Hong-Soo;Yang, Ju-Saeng;Kim, Ho-Sup;Ko, Rock-Kil;Song, Kyu-Jung;Ha, Dong-Woo;Oh, Sang-Soo;Joo, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.22-23
    • /
    • 2005
  • In order to increase the critical current of coated conductor, highly Bi-axially textured substrates are required. Texture uniformity of substrate is also important to fabricate high quality superconducting coated conductor because the amount of current flow along the coated conductor is limited by the defects such as bad textured area. Therefore, we need to evaluate the distribution of texture of Ni substrate along the length before buffer layer deposition on Ni tape. R2R(reel-to-reel) XRD system was used to measure the texture of long Ni substrate continuously. $\theta-2\theta$ scan of 10 m long Ni tape was measured and indicates that some of Ni(111) planes equally remain on Ni(002) textured substrate. The results of continuous Ni(220) $\Phi$-scan indicate that average FWHM is 9$^{\circ}$ within $\pm$1.

  • PDF

Electrospray and Thermal Treatment Process for Enhancing Surface Roughness of Fecralloy Coating Layer on a Large Sized Substrate (대면적 Fecralloy 코팅층의 표면 거침도 극대화를 위한 정전분무 및 열처리 공정 연구)

  • Lee, Hye Moon;Koo, Hye Young;Yang, Sangsun;Park, Dahee;Jung, Sooho;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • Fecralloy coating layer with large surface area is suitable for use as a filter media for efficient removal of hot gaseous pollutants exhausted from combustion processes. For uniform preparation of a Fecralloy coating layer with large surface area and strong adhesion to substrate, electrospray coating and thermal treatment processes are experimentally optimized in this study. A nano-colloidal solution with 0.05 wt% Fecralloy nanoparticles is successfully prepared. Optimized electrospraying conditions are experimentally discovered to prepare a uniform coating layer of Fecralloy nano-colloidal solution on a substrate. Drying the electrospray coated Fecralloy nano-colloidal solution layer at $120^{\circ}C$ and subsequent heating at $600^{\circ}C$ are the best post-treatment for enhancing the adhesion force and surface roughness of the Fecralloy coating layer on a substrate. An electrospray coating system, consisting of several multi-groove nozzles, is also experimentally confirmed as a reasonable device for uniform coating of Fecralloy nano-colloid on a large area substrate.

The Study of poly-Si Eilm Crystallized on a Mo substrate for a thin film device Application (박막소자응용을 위한 Mo 기판 위에 고온결정화된 poly-Si 박막연구)

  • 김도영;서창기;심명석;김치형;이준신
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 2003
  • Polycrystalline silicon thin films have been used for low cost thin film device application. However, it was very difficult to fabricate high performance poly-Si at a temperature lower than $600^{\circ}C$ for glass substrate because the crystallization process technologies like conventional solid phase crystallization (SPC) require the number of high temperature (600-$1000^{\circ}C$) process. The objective of this paper is to grow poly-Si on flexible substrate using a rapid thermal crystallization (RTC) of amorphous silicon (a-Si) layer and make the high temperature process possible on molybdenum substrate. For the high temperature poly-Si growth, we deposited the a-Si film on the molybdenum sheet having a thickness of 150 $\mu\textrm{m}$ as flexible and low cost substrate. For crystallization, the heat treatment was performed in a RTA system. The experimental results show the grain size larger than 0.5 $\mu\textrm{m}$ and conductivity of $10^{-5}$ S/cm. The a-Si was crystallized at $1050^{\circ}C$ within 3min and improved crystal volume fraction of 92 % by RTA. We have successfully achieved a field effect mobility over 67 $\textrm{cm}^2$/Vs.

Development of a Finite Element Program for Determining Mat Pressure in the Canning Process for a Catalytic Converter (촉매변환기를 캐닝할 때 발생하는 매트의 압력분포 유한요소해석 프로그램의 개발)

  • Chu, Seok-Jae;Lee, Young-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1471-1476
    • /
    • 2011
  • The catalytic converter in the front part of an automobile's exhaust system converts toxic exhaust gas into nontoxic gas. The substrate in the central part of the converter has a circular or oval-shaped cross section and fine lattice-shaped walls. In the canning process, the substrate is wrapped in mats and inserted into a can. During this process, mat pressure is induced, which may cause brittle fracturing in the substrate. In this paper, a finite element program for determining the mat pressure distribution was developed to avoid these fractures. The program was created in Microsoft EXCEL, so the input and output procedures are relatively simple. It was assumed that the substrate is rigid, the mat is material nonlinear, and the can is linear elastic. The can is modeled as a beam element to resist both bending and uniform tension/compression. The number of elements is fixed to 35, and the number of iterations, to 20. The solutions are compared to ABAQUS solutions and found to be in good agreement.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

Improvement in Capacitor Characteristics of Titanium Dioxide Film with Surface Plasma Treatment (플라즈마 표면 처리를 이용한 TiO2 MOS 커패시터의 특성 개선)

  • Shin, Donghyuk;Cho, Hyelim;Park, Seran;Oh, Hoonjung;Ko, Dae-Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • Titanium dioxide ($TiO_2$) is a promising dielectric material in the semiconductor industry for its high dielectric constant. However, for utilization on Si substrate, $TiO_2$ film meets with a difficulty due to the large leakage currents caused by its small conduction band energy offset from Si substrate. In this study, we propose an in-situ plasma oxidation process in plasma-enhanced atomic layer deposition (PE-ALD) system to form an oxide barrier layer which can reduce the leakage currents from Si substrate to $TiO_2$ film. $TiO_2$ film depositions were followed by the plasma oxidation process using tetrakis(dimethylamino)titanium (TDMAT) as a Ti precursor. In our result, $SiO_2$ layer was successfully introduced by the plasma oxidation process and was used as a barrier layer between the Si substrate and $TiO_2$ film. Metal-oxide-semiconductor ($TiN/TiO_2/P-type$ Si substrate) capacitor with plasma oxidation barrier layer showed improved C-V and I-V characteristics compared to that without the plasma oxidation barrier layer.