• 제목/요약/키워드: Substrate system

검색결과 2,293건 처리시간 0.031초

Influence of Fe(110) Substrate with strong On-site Coulomb Repulsion on the Electronic Structure of Single Cobalt Tetraphenylporphyrin: Scanning Tunneling Microscopy Study

  • 오영택;정호균;서정필;김효원;전상준;김성민;유재준;국양
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.94-94
    • /
    • 2010
  • Scanning tunneling microscopy (STM) was used to study the electronic structure of cobalt(II) tetraphenylporphyrin (CoTPP) on the Fe/W(110) substrate. Clover-like conformation of CoTPP was observed and showed bias dependent STM images. The central Co(II) ion of this porphyrin was protruded on the positive biases, but it was depressed on the negative biases. On the positive biases, the phenyl rings of CoTPP appeared to be bright contrary to the invisible pyrrole rings. These results were compared the first-principles calculations using GGA and GGA+U to elucidate the influence of the Fe substrate. GGA+U results agreed well with the experimental results; however, GGA did not. These results show that proper treatment of the on-site Coulomb repulsion of the Fe ions is crucial to describe the electronic structure of this system. By the comparison between the GGA+U calculations on the Fe substrate and the gas phase calculations, it can be noted that chemical potential shift occurred accompanying charge transfer from the Fe ions of the substrate to the pyrrole ligand of the porphyrin.

  • PDF

신축성 전자소자를 위한 신축성 전극 및 스트레인 센서 개발 동향 (Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics)

  • 박진영;이원재;남현진;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.25-34
    • /
    • 2018
  • In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.

Synthesis of Short-Chain Alkyl Butyrate through Esterification Reaction Using Immobilized Rhodococcus Cutinase and Analysis of Substrate Specificity through Molecular Docking

  • Seok-Jae Won;Joung Han Yim;Hyung Kwoun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.268-276
    • /
    • 2023
  • Alkyl butyrate with fruity flavor is known as an important additive in the food industry. We synthesized various alkyl butyrates from various fatty alcohol and butyric acid using immobilized Rhodococcus cutinase (Rcut). Esterification reaction was performed in a non-aqueous system including heptane, isooctane, hexane, and cyclohexane. As a result of performing the alkyl butyrate synthesis reaction using alcohols of various chain lengths, it was found that the preference for the alcohol substrate had the following order: C6 > C4 > C8 > C10 > C2. Through molecular docking analysis, it was found that the greater the hydrophobicity of alcohol, the higher the accessibility to the active site of the enzyme. However, since the number of torsions increased as the chain length increased, it became difficult for the hydroxyl oxygen of the alcohol to access the γO of serine at the enzyme active site. These molecular docking results were consistent with substrate preference results of the Rcut enzyme. The Rcut maintained the synthesis efficiency at least for 5 days in isooctane solvent. We synthesized as much as 452 mM butyl butyrate by adding 100 mM substrate daily for 5 days and performing the reaction. These results show that Rcut is an efficient enzyme for producing alkyl butyrate used in the food industry.

Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes

  • Arjun Siddharth Mangalasseri;Vinyas Mahesh;Sriram Mukunda;Vishwas Mahesh;Sathiskumar A Ponnusami;Dineshkumar Harursampath;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.27-43
    • /
    • 2023
  • This article investigates the energy harvesting characteristics of a magneto-electro-elastic (MEE) cantilever beam reinforced with carbon nanotubes (CNT) under transverse vibration. To this end, the well-known lumped parameter model is used to represent the coupled multiphysics problem mathematically. The proposed system consists of the MEE-CNT layer on top and an inactive substrate layer at the bottom. The substrate is considered to be made of either an isotropic or composite material. Basic laws such as Gauss's Law, Newton's Law and Faraday's Law are used to arrive at the governing equations. Surface electrodes across the beam are used to harvest the electric potential produced, together with a wound coil, for the generated magnetic potential. The influence of various distributions of the CNT and its volume fraction, substrate material, length-to-thickness ratio, and thickness ratio of substrate to MEE layer on the energy harvesting behaviour is thoroughly discussed. Further, the effect of external resistances and changes in substrate material on the response is analysed and reported. The article aims to explore smart material-based energy harvesting systems, focusing on their behaviour when reinforced with carbon nanotubes. The results of this study may lead to an improved understanding of the design and analysis of CNT-based smart structures.

초음파 성형시 진동전달 방향에 따른 미세패턴의 전사특성 고찰 (Replication Characteristics of Micro-Patterns according to the Vibration Transmission Direction in the Ultrasonic Imprinting Process)

  • 서영수;이기연;조영학;박근
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1256-1263
    • /
    • 2012
  • The present study covers the ultrasonic patterning process to replicate micro-patterns on a polymer substrate. The ultrasonic patterning process uses ultrasonic waves to generate frictional heat between an ultrasonic horn and the polymer substrate, from which the surface region of the polymer substrate is softened sufficiently for the replication of micro-patterns. The ultrasonic patterning process can divided into two categories according to the direction of vibration transmission: direct patterning and indirect patterning. The direct patterning uses a patterned horn, and the ultrasonic vibration is transferred directly from the patterned horn to the substrate. On the contrary, the indirect patterning process uses a plain horn, and the micro-patterns are engraved on a mold that is located below the substrate. Thus, the micro-patterns are replicated as an indirect manner. In this study, these direct and indirect patterning processes are compared in terms of the replication characteristics. Additionally, the possibility of double-side patterning is also discussed in comparison with the conventional single-side patterning process.

롤투롤 스퍼터 시스템을 이용하여 PET 기판위에 성막 시킨 ITO 박막의 특성 연구 (Characteristics of Indium Tin Oxide Films Grown on PET Substrate Grown by Using Roll-to-Roll (R2R) Sputtering System)

  • 조성우;최광혁;배정혁;문종민;정진아;정순욱;박노진;김한기
    • 한국재료학회지
    • /
    • 제18권1호
    • /
    • pp.32-37
    • /
    • 2008
  • The electrical, optical, structural and surface properties of an indium tin oxide (ITO) film grown on a flexible PET substrate using a specially designed roll-to-roll (R2R) sputtering system as a function of the DC power, $Ar/O_2$ flow ratio, and rolling speed is reported. It was observed that both the electrical and optical properties of the ITO film on the PET substrate were critically dependent on the $Ar/O_2$ flow ratio. In addition, x-ray diffraction examination results showed that the structure of the ITO film on the PET substrate was an amorphous structure regardless of the DC power and the $Ar/O_2$ flow ratio due to a low substrate temperature, which was maintained constant by a main cooling drum. Under optimized conditions, ITO film with resistivity of $6.44{\times}10^{-4}{\Omega}-cm$ and transparency of 86% were obtained, even when prepared at room temperature. Furthermore, bending test results exhibited that R2R-grown ITO film had good flexibility which would be applicable to flexible displays and solar cells.

TFT LCD 제조용 대면적 Magnetron Sputtering 장치 설계와 Al 성장막 특성 조사 (Design of a Large Magnetron Sputtering System for TFT LCD and Investigation of Sputtered AI Film Properties)

  • 유운종
    • 한국진공학회지
    • /
    • 제2권4호
    • /
    • pp.480-485
    • /
    • 1993
  • Factros considered building the magnetron sputtering system for TFT LCD (thin film transistor liquid crystal display0 metallization were thin film thichnes uniformity, temperature uniformity and the pressure gradient of sputtering gas flow in vacuum chamber, base pressure, and the stability fo the carrier moving . The system was consisted of a deposition chamber, a pre-heating chamber, a RF-precleaning chamber and a load/unload lock chamber. The system was designed to handle a substrate with dimension of 400$\times$400mm. The temperautre uniformity of a heater table developed showed $250 ^{\circ}C\pm$5% accuracyon the substrate glass. A base pressure of 1.8 $\times$10-7 torr was obtained after 24 hours pumping with a cryo pump. After an aluminum target was installed in a sputtering source and the film wa sdeposited on the glass, the uniformity, reflectivity and sheet resistance of the deposited film were measured.

  • PDF

Characterization of biotin-avidin recognition system constructed on the solid substrate

  • Lim, Jung-Hyurk
    • 분석과학
    • /
    • 제18권6호
    • /
    • pp.460-468
    • /
    • 2005
  • The biotin-avidin complex, as a model recognition system, has been constructed through N-hydroxysuccinimide(NHS) reaction on a variety of substrates such as a smooth Au film, electrochemically roughened Au electrode and chemically modified mica. Stepwise self-assembled monolayers (SAMs) of biotin-avidin system were characterized by surface-enhanced resonance Raman scattering (SERRS) spectroscopy, atomic force microscopy (AFM) and surface plasmon resonance (SPR). A strong SERRS signal of rhodamine tags labeled in avidin from the SAMs on a roughened gold electrode indicated the successful complex formation of stepwise biotin-avidin recognition system. AFM images showed the circular shaped avidin aggregates (hexamer) with ca. $60{\AA}$ thick on the substrate, corresponding to one layer of avidin. The surface coverage and concentration of avidin molecules were estimated to be 90% and $7.5{\times}10^{-12}mol/cm^2$, respectively. SPR technique allowed one to monitor the surface reaction of the specific recognition with high sensitivity and precision.

A New Detergentless Micro-Emulsion System Using Urushiol as an Enzyme Reaction System

  • Kim, John-Woo-Shik;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.369-375
    • /
    • 2001
  • Urushiol, a natural monomeric oil, was used to prepare a detergentless micro-emulsion with water and 2-propanol The formation of micro-emulsion was verified by conductivity measurements and dynamic light scattering. The conductivity data showed phase change dynamics, a characteristics of micro-emulsions, and subsequent dynamic light scattering study further confirmed the phenomenon. Average water droplet diameter was 10 nm to 500 nm when the molar ratio of 2-propanol ranged from 0.40 to 0.44 . Earlier studies were performed on toluene and hexane, in which the insoluble substrate in water phase was added to the solvents to be reacted on by enzymes. However, in the present urushiol system, urushiol was used as both solvent and substrate in the laccase polymerization of urushiol. The laccase activity in the system was examined using polymerization of urushiol. The laccase activity in the system was examined using syringaldezine as a substrate, and the activity increased rapidly near the molar ratio of 2-propanol at 0.4, where micro-emulsion started. The activity rose until 0.46 and fell dramatically thereafter. The study of laccase activity in differing mole fractions of 2-propanol showed the existence of an ‘optimal zone’, where the activity of laccase was significantly higher. In order to analyze urushiol polymerization by laccase, a bubble column reactor using a detergentless micro-emulsion system was constructed. Comparative study using other organic solvents systems were conducted and the 2-propanol system was shown to yield the highest polymerization level. The study of laccase activity at a differing mole fraction of 2-propanol showed the existence of an ‘optimal zone’ where the activity was significantly higher. Also, 3,000 cP viscosity was achieved in actual urushi processing, using only 1/100 level of laccase present in urushi.

  • PDF

S자형 들보에 의해 지지되는 micromirror의 제작 및 동작특성 분석 (A Study on the Fabrication and Characterization of Micromirrors Supported by S-shape Girders)

  • 김종국;김호성;신형재
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권11호
    • /
    • pp.748-754
    • /
    • 1999
  • Micromirrors supported by S-shape girders were fabricated and their angular deflections were measured using a laser-based system. A micromirror consists of a $50\mum\times50\mum$ aluminum plate, posts and an S-shape girder. Two electrodes were deposited on two corners of the substrate beneath the mirror plate. $50\times50$micromirror array were fabricated using the Al-MEMS process. The electrostatic force caused by the voltage difference between the mirror plate and one of the electrodes causes the mirror plate to tilt until the girder touches the substrate. Bial voltage of the mirror plate is between 25~35V and signal pulse voltage on both electrodes is $\pm5V$. A laser-based system capable of real-time two-dimensional angular deflection measurement of the micromirror was developed. The operation of the system is based on measuring the displacement of a HeNe laser beam reflecting off the micromirror. The resonant frequency of the micromirror is 50kHz when the girder touches the substrate and it is 25 when the micromirror goes back to flat position, since the moving mass is about twice of the former case. The measurement results also revealed that the micromirror slants to the other direction even after the girder touches the substrate.

  • PDF