• Title/Summary/Keyword: Substrate power

Search Result 1,455, Processing Time 0.03 seconds

A Miniaturized 2.5 GHz 8 W GaN HEMT Power Amplifier Module Using Selectively Anodized Aluminum Oxide Substrate (선택적 산화 알루미늄 기판을 이용한 소형 2.5 GHz 8 W GaN HEMT 전력 증폭기 모듈)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1069-1077
    • /
    • 2011
  • In this paper, a design and fabrication of a miniaturized 2.5 GHz 8 W power amplifier using selectively anodized aluminum oxide(SAAO) substrate are presented. The process of SAAO substrate is recently proposed and patented by Wavenics Inc. which uses aluminum as wafer. The selected active device is a commercially available GaN HEMT chip of TriQuint company, which is recently released. The optimum impedances for power amplifier design were extracted using the custom tuning jig composed of tunable passive components. The class-F power amplifier are designed based on EM co-simulation of impedance matching circuit. The matching circuit is realized in SAAO substrate. For integration and matching in the small package module, spiral inductors and single layer capacitors are used. The fabricated power amplifier with $4.4{\times}4.4\;mm^2$ shows the efficiency above 40 % and harmonic suppression above 30 dBc for the second(2nd) and the third(3rd) harmonic at the output power of 8 W.

Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향)

  • Kim Jin-Sa;Oh Yong-Cheol;Cho Choon-Nam;Lee Dong-Gyu;Shin Cheol-Gi;Kim Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.505-509
    • /
    • 2004
  • The (Sr/sub 0.9/Ca/sub 0.1/)TiO₃(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/SiO₂/Si) using RF sputtering method at various substrate temperature. The optimum conditions of RF power and Ar/O₂ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75[Å/min]. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of 100~500[℃]. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of -80~+90[℃]. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

Real-time Spectroscopic Ellipsometry studies of the Effect of Preparation Parameters on the Coalescence Characteristics of Microwave-PECVD Diamond Films

  • Hong, Byungyou
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.49-54
    • /
    • 1998
  • The growth of diamond films in plasma enhanced chemical vapor deposition(PECVD) processes requires high substrate temperatures and gas pressures, as well as high-power excitation of the gas source. Thus determining the substrate temperature in this severe environment is a challenge. The issue is a critical one since substrate temperature is a key parameter for understanding and optimizing diamond film growth. The precise Si substrate temperature calibration based on rapid-scanning spectroscopic ellipsometry have been developed and utilized. Using the true temperature of the top 200 ${\AA}$ of the Si substrate under diamond growth conditions, real time spectroellipsometry (RTSE) has been performed during the nucleation and growth of nanocrystallind thin films prepared by PECVD. RTSE shows that a significant volume fraction of nondiamond(or{{{{ {sp }^{2 } -bonded}}}}) carbon forms during thin film coalescence and is trapped near the substrate interface between ∼300 ${\AA}$ diamond nuclei.

  • PDF

A Fundamental Study for a Photocatalytic Reactor Design (광촉매 반응치 설계를 위한 기초 연구)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • Because UV wavelength lights can activate photocatalysts, plasma is used as a light source of a photocatalytic reactor. Even though plasma has good intensity for photo reaction, substrate of catalyst coating was limited by the geometry of plasma generator. Usually bead type substrate was used for a pack bed type reactor. Honeycomb monolith type substrate was used with UV lamps instead plasma, due to the light penetration the honeycomb monolith length was too short to show good activity In this study a photocatalytic reactor, which is using a honeycomb monolith substrate, was investigated with plasma as an activation light source. As a parametric study the effects of 1311owing factors on plasma generation and power consumption are examined; supply voltage, substrate length, environment condition, catalyst loading and ratio. Using the test results, the practicability test was done with simulated synthetic gases representing bad smells and automotive exhaust gases.

Substrate-bias voltage generator for leakage power reduction of digital logic circuits operating at low supply voltage (초저전압 구동 논리 회로의누설 전류 억제를 위한 기판 전압 발생회로)

  • Kim Gil-Su;Kim Hyung-Ju;Park Sang-Soo;Yoo Jae-Tack;Ki Hoon-Jae;Kim Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.1-6
    • /
    • 2006
  • This paper proposes substrate-bias voltage generator to reduce leakage power consumption of digital logic circuits operating at supply voltage of 0.5V. Proposed substrate-bias voltage generator is composed of VSS and VBB generator. The former circuit produces negative voltage and supplies its output voltage for VBB generator. As a result VBB generator develops much lower negative voltage than that of conventional one. Proposed circuit is fabricated using 0.18um 1Poly-6Metal CMOS process and measurement result demonstrated stable operation with substrate-bias voltage of -0.95V.

Power Semiconductor SMD Package Embedded in Multilayered Ceramic for Low Switching Loss

  • Jung, Dong Yun;Jang, Hyun Gyu;Kim, Minki;Jun, Chi-Hoon;Park, Junbo;Lee, Hyun-Soo;Park, Jong Moon;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.866-873
    • /
    • 2017
  • We propose a multilayered-substrate-based power semiconductor discrete device package for a low switching loss and high heat dissipation. To verify the proposed package, cost-effective, low-temperature co-fired ceramic, multilayered substrates are used. A bare die is attached to an embedded cavity of the multilayered substrate. Because the height of the pad on the top plane of the die and the signal line on the substrate are the same, the length of the bond wires can be shortened. A large number of thermal vias with a high thermal conductivity are embedded in the multilayered substrate to increase the heat dissipation rate of the package. The packaged silicon carbide Schottky barrier diode satisfies the reliability testing of a high-temperature storage life and temperature humidity bias. At $175^{\circ}C$, the forward current is 7 A at a forward voltage of 1.13 V, and the reverse leakage current is below 100 lA up to a reverse voltage of 980 V. The measured maximum reverse current ($I_{RM}$), reverse recovery time ($T_{rr}$), and reverse recovery charge ($Q_{rr}$) are 2.4 A, 16.6 ns, and 19.92 nC, respectively, at a reverse voltage of 300 V and di/dt equal to $300A/{\mu}s$.

Broad-Band Substrate Integrated Waveguide Power Divider with Excellent Isolation Performance (광대역 격리 특성을 갖는 기판 집적 도파관 전력 분배기)

  • Kim, Kyeong-Min;Byun, Jin-Do;Jung, Kyung-Young;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.680-687
    • /
    • 2009
  • In this paper, we propose a substrate integrated waveguide(SIW) power divider to yield excellent broadband isolation performance. In order to achieve high broadband isolation, a two stage Wilkinson power divider is employed in SIW. The measurement results show the insertion loss($S_{21}$, $S_{31}$ to be $4.0{\pm}0.5$ dB) and input return loss($S_{11}$ of 10 dB) from 13.12 GHz to 16.14 GHz. Moreover, the results show that the output return loss and isolation between output ports are larger than 10 dB between 10.37 GHz and 17.64 GHz.

Transmit-receive Module for Ka-band Seekers using Multi-layered Liquid Crystal Polymer Substrates (다층 액정폴리머 기판을 이용한 Ka대역 탐색기용 송수신 모듈)

  • Choi, Sehwan;Ryu, Jongin;Lee, Jaeyoung;Lee, Jiyeon;Nam, ByungChang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.63-70
    • /
    • 2020
  • In this paper, the transmit-receive module for military seekers has been designed and fabricated in 35 GHz. To increase the performance of substrates and high integration of circuits in millimeter-wave band, a 4-layer LCP(Liquid Crystal Polymer) substrate was developed. This substrate was implemented with three FCCL substrates and two adhesive layers, and a process using the difference in melting point between the substrates was used for lamination. Using a strip line and a microstrip line was confirmed by the transmission loss along the length of the substrate, and the performance of LCP substrates was validated with a power divider in 35 GHz. After confirming the performance of individual blocks such as power amplifier and low noise amplifier, a single channel Ka-band transmission/reception module was developed using a 4-layer liquid crystal polymer substrate. The transmit power of this module has above 1.1W in pulse duty 10% and has an output power of 1.1W and it has receive noise figure less than 8.5 dB and receive gain more than 17.6 dB.

RF Power에 의한 MgO 박막의 구조적 특성

  • Song, Ji-Hun;Seong, Hyo-Seong;Kim, U-Seong;Jang, Nak-Won;Lee, Ju-Yeong;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.125-125
    • /
    • 2009
  • In this paper, we have investigated about MgO thin films on Si(100) substrate by RF magnetron Sputtering. MgO thin films were affected by RF input power, gas pressure, gas composition, and substrate temperatures. So, we focused on most effective RF input power in deposition condition. Thickness of MgO thin films was measured by surface profiler. And structural analysis carried out by X-ray Diffraction(XRD). physical characteristic and thickness of thin films changed with RF input power.

  • PDF

Design and EM Analysis of Dual Band Hilbert Curve Based Wilkinson Power Divider

  • Kaur, Avneet;Singh, Harsimran;Malhotra, Jyoteesh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.257-260
    • /
    • 2016
  • In this paper, two configurations (T-type and Y-type) of dual band Wilkinson Power Divider based upon Hilbert curves are presented. Formerly, the concept of Hilbert Curves was implemented in only designing microstrip antennas. In power dividers, this is the very first attempt of incorporating them for size reduction. In addition to this, an effect of inculcation of high-dielectric constant layer (Hafnium-oxide, HfO2, εr= 25) between a substrate and top metallization in both configurations was investigated. The proposed configurations are designed on a high resistive silicon substrate (HRS) for L and S bands with resonating frequencies of 1.575 and 3.4 GHz. Both configurations have return loss that is better than 20 dB and an insertion loss of around 6 dB; isolation better than 30 dB was achieved for both models.