• Title/Summary/Keyword: Substrate culture

Search Result 655, Processing Time 0.024 seconds

Plant Cell-Wall Degradation and Glycanase Activity of the Rumen Anaerobic Fungus Neocallimastix frontalis MCH3 Grown on Various Forages

  • Fujino, Y.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.752-757
    • /
    • 1999
  • Studies were made of digestion of timothy (Pheleum pretense) hay, tall fescue (Festuca elatior) hay, and rice (Oryza sativa) straw in pure cultures of rumen anaerobic fungus, Neocallimastix frontails MCH3. The fungus was inoculated on ground forages (1%, w/v) in an anaerobic medium and incubated at $39^{\circ}C$. Incubation was continued for 24, 48, 72 and 96 h. The losses of dry matter, xylose and glucose of forage during incubation were determined at the end of these incubation periods. Xylose and glucose were considered to be released from xylan and cellulose, respectively. The digested xylan to digested cellulose (X/C) ratios of the substrate were calculated. Xylanase and carboxymethyl cellulose (CMCase) of culture supernatant and residual substrate was measured at the same time. The X/C ratios in the cultures on timothy hay and rice straw were greater than 0.5 in the first 24-h incubation period. The values were smaller than 0.3 in tall fesque. The ratio of xylanase activity to that of CMCase in the first 24-h incubation period correlated well with the traits in X/C ratio. However xylanase activity was still superior to CMCase in the following incubation period (48 to 96 h), although the glucose (designated as cellulose) was more intensively digested than xylose (designated as xylan). The production of these polysaccharidases appeared to correlate with substrate cell-wall sugar composition, xylose to glucose ratios, at the beginning of fast growing period.

Effects of Substrate Size on the Growth of 4 Microphytobenthos Species (Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp.) (저서미세조류 4종(Achnanthes sp., Amphora sp., Navicula sp. 그리고 Nitzschia sp.)의 성장에 영향을 미치는 부착기질 크기의 영향)

  • Kwon, Hyeong-Kyu;Yang, Han-Soeb;Yu, Yeoung-Moon;Oh, Seok-Jin
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • The effects of substrate size on the growth of microphytobenthos Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. were examined using glass beads in order for phytoremediation in the benthic layer of coastal waters. The glass beads used in this study were 0.09~0.15 mm (G.B 1), 0.25~0.50 mm (G.B 2), 0.75~1.00 mm (G.B 3) and 1.25~1.65 mm (G.B 4). No addition of glass bead used as control. The specific growth rate and maximum cell density of four microphytobenthos species were increasing with decreasing size of glass beads. Moreover, the control experiment without added attachment substrates showed the lowest specific growth rate and maximum cell density. Therefore, the suitable attachment substrates for mass culture of microphytobenthos seems to be important in order for phytoremediation using microphytobenthos.

Nutritional Physiology and improvement of substrate of Lentinus edodes (표고 버섯(Lentinus edodes)의 영양생리 및 기질개발)

  • Park, Won-Mok;Song, Chi-Hyeun;Hyun, Jae-Wook
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 1992
  • Researches were carried out to find the optimal conditions of carbon sources, nitrogen sources and pH for the maximum production of sporophore of Lentinus edodes. Dextrin, aspartic acid and pH 4.0 were the best conditions for yield of sporophore by using replacement culture technique. The production of sporophore was stimulated by addition of 0.8% triacylglycerol in NS medium. Coffee waste was chosen for the best substrate among the poplar, oak, white aspen saw dust and coffee waste. Increased growth of mycelim and yield of sporophore was obsewed by adding tannin up to 0.1% as substrate.

  • PDF

Development of an Agar Diffusion Method to Measure Elastase Inhibition Activity Using Elastin-Congo Red

  • Jung Kyung-Hwan;Kim Hyun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1320-1324
    • /
    • 2006
  • The pancreatic and neutrophil elastases are associated with several illnesses including lung and vascular diseases, various cancers, and pancreatitis. The development of a potent and specific inhibitor to the elastases could lead to new therapies. In this study, an agar diffusion method was modified to include a substrate-dye conjugate (Elastin-Congo red) as a substrate of elastase and an indicator of elastase inhibitory activity. The Elastin-Congo red agar plates consisted of 0.1 % Elastin-Congo red and 2.5% agar. The elastase and elastase inhibitors were simultaneously loaded into wells, ultimately resulting in halo formations in which the halo diameter decreased as the concentration of elastase inhibitor increased. The concentration of elastase inhibitor in the samples, therefore, was inversely proportional to the halo diameters. This simplified method provided an excellent correlation with the standard microplate technique, which uses a chromogenic substrate. The concentration of elastase inhibitor obtained from the culture supernatant of a recombinant elastase inhibitor produced by the yeast Pichia pastoris was easily determined. This study has established a simple modified and inexpensive agar diffusion method that is potentially useful for the identification, quantification, and screening of new elastase inhibitors.

Biochemical Properties and Substrate Specificity of Lipase from Staphylococcus aureus B56

  • Jung, Woo-Hyuk;Kim, Hyung-Kwoun;Lee, Chan-Yong;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2002
  • A lipase of Staphylococcus aureus B56 was purified from a culture supernatant and its molecular weight was estimated to be 45 kDa by SDS-PAGE. The optimum temperature and pH for the hydrolysis of olive oil was $42^{\circ}C$ and pH 8-8.5, respectively. The enzyme was stable up to $55^{\circ}C$ in the presence of $Ca^++$ at pHs 5-11. The lipase gene was cloned using the PCR amplification method. The sequence analysis showed an open reading frame of 2,076 bp, which encoded a preproenzyme of 691 amino acids. The preproenzyme was composed of a signal sequence (37 aa), propeptide (255 aa), and mature enzyme (399 aa). Based on a sequence comparison, lipase B56 constituted of a separate subgroup among the staphylococcal lipase groups, such as S. aureus PS54 and S. haemolyticus L62 lipases, and was distinct from other lipases in their optimum pH and substrate specificity.

Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong;Kim, Myoung-Dong;Yoo, Myung-Sang;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.725-730
    • /
    • 2003
  • Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.

Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii (황결핍 된 Chlamydomonas Reinhardtii 배양액에서 수소생산을 위한 제한 인자들의 영향)

  • Kim, Jun-Pyo;Sim, Sang-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.286-292
    • /
    • 2006
  • Chlamydomonas reinhardtii is a green algae that can use light energy and water to produce hydrogen under anaerobic condition. This work reports the effect of limiting factors on hydrogen production in sulfur deprived anaerobic C. reinhardtii culture. In order to confirm the relationship between hydrogen production and limiting factors such as residual PSII activity and endogenic substrate degradation, the increase in chlorophyll concentration and the decrease in starch concentration was investigated during sulfur deprivation. The overall hydrogen production increased depending on cell density in range of $0.4{\sim}0.96\;g$ DCW/l. At this time, the increase in chlorophyll concentration during 24 h after sulfur deprivation increased in proportion to hydrogen production, however, the decrease in starch concentration was not proportional to that. Therefore, hydrogen production under sulfur deprivation using green alga was closely associated with the residual PSII activity than the endogenic substrate degradation.

Continuous On-line Estimation of Cell Growth and Substrate Consumption Using a Computer-coupled Mass Spectrometer (Computer-coupled Mass Sepctrometer를 이용한 세포증식과 기질소모의 연속적 On-line추정)

  • 남수완;김정희
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.118-122
    • /
    • 1989
  • From the on-line mass spectrometric analyese of the exhaust gaseous composition of fermentor and the material balance equations for oxygen and carbon dioxide, oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) were calculate using a personal computer (IBM PC-AT) interfaced to a quadrupole mass spectromter. The calculate OUR and CER were used for the indirect estimation of cell and substrate concentrations during the batch culture of Candida utilis. For the estimation of sustrate concentration, the yield model of Pirt was applied. It was found that the cell and substrate (glucose) concentration could be ssatisfactorily estimataed and the results showed the more accurate estimations of both fermentation state variables when OUR data were used than CER data.

  • PDF

Kinetics and Modelling of Cell Growth and Substrate Uptake in Centella asiatica Cell Culture

  • Omar, Rozita;Abdullah, M.A.;Hasan, M.A.;Rosfarizan, M.;Marziah, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • In this study, we have conducted kinetics and modelling studies of Centella asiatica cell growth and substrate uptake, in an attempt to evaluate cell growth for a better understanding and control of the process. In our bioreactor cultivation experiment, we observed a growth rate of 0.18/day, a value only 20% higher than was seen in the shake flask cultivation trial. However, the observed maximum cell dry weight in the shake flask, 10.5g/L, was 14% higher than was achieved in the bioreactor. Ninety seven percentage confidence was achieved via the fitting of three unstructured growth models; the Monod, Logistic, and Gompertz equations, to the cell growth data. The Monod equation adequately described cell growth in both cultures. The specific growth rate, however, was not effectively predicted with the Logistic and Gompertz equations, which resulted in deviations of up to 73 and 393%, respectively. These deviations in the Logistic and Gompertz models may be attributable to the fact that these models were developed for substrate-independent growth and fungi growth, respectively.

Purification and Characterization of Laccase from the White Rot Fungus Trametes versicolor

  • Han Moon-Jeong;Choi Hyoung-Tae;Song Hong-Gyu
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.555-560
    • /
    • 2005
  • Laccase is one of the ligninolytic enzymes of white rot fungus Trametes versicolor 951022, a strain first isolated in Korea. This laccase was purified 209-fold from culture fluid with a yield of $6.2\%$ using ethanol precipitation, DEAE-Sepharose, Phenyl-Sepharose, and Sephadex G-100 chromatography. T. versicolor 951022 excretes a single monomeric laccase showing a high specific activity of 91,443 U/mg for 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as a substrate. The enzyme has a molecular mass of approximately 97 kDa as determined by SDS-PAGE, which is larger than those of other laccases reported. It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 3.0 and a temperature of $50^{\circ}C$. The $K_m$ value of the enzyme for substrate ABTS is $12.8{\mu}M$ and its corresponding $V_{max}$ value is 8125.4 U/mg. The specific activity and substrate affinity of this laccase are higher than those of other white rot fungi, therefore, it may be potentially useful for industrial purposes.