• Title/Summary/Keyword: Substitution site

Search Result 282, Processing Time 0.026 seconds

Dependence of the lithium ionic conductivity on the B-siteion substitution in $(Li_{0.5}La_{0.5})Ti_{1-x}M_xO_3$

  • Kim, Jin-Gyun;Kim, Ho-Gi
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.9-17
    • /
    • 1998
  • The dependence of the ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1-xMxO3 (M=Sn, Zr, Mn, Ge) system has been studied. Same valence state and various electronic configuration and ionic radius of Sn4+, Zr4+, Mn4+ and Ge4+(4d10(0.69$\AA$), 4p6(0.72$\AA$), 3d10(0.54$\AA$) and 3d3(0.54$\AA$), respectively) induced the various crystallographic variaton with substitutions. So it was possibleto investigate the crystallographic factor which influence the ionic conduction by observing the dependence of the conductivity on the crystallographic factor which influence the ionic conduction by observing the dependence of the conductivity on the crystallographic variations. We found that the conductivity increased with decreasing the radii of B-site ions or vice versa and octahedron distortion disturb the ion conduction. The reason for this reciprocal proportion of conductivity on the radius of B-site ions has been examined on the base of the interatomic bond strength change due to the cation substitutions. The results were good in agreement with the experimental results. Therefore it could be concluded that the interatomic bond strength change due to the cation substitutions may be the one of major factors influencing the lithium ion conductivity in perovskite(Li0.5La0.5) TiO3system.

  • PDF

Mutational Analysis of the Metal-binding Sites of Peroxide Sensor PerR

  • Won, Young-Bin;Ji, Chang-Jun;Cho, Ju-Hyun;Lee, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1573-1576
    • /
    • 2010
  • Bacillus subtilis PerR is a metal-dependent peroxide-sensing transcription factor which uses metal-catalyzed histidine oxidation for peroxide-sensing. PerR contains two metal binding sites, one for structural $Zn^{2+}$ and the other for the regulatory/peroxide-sensing metal. Here we investigated the effect of mutations at both the structural and regulatory metal binding sites on the oxidation of either H37 or H91, two of the peroxide-sensing ligands. All four serine substitution mutants at the structural $Zn^{2+}$ site (C96S, C99S, C136S and C139S) exhibited no detectable oxidation at histidine residues. Two of the alanine substitution mutants at regulatory metal site (H37A and D85A) exhibited selective oxidation preferentially at the H91-containing tryptic peptide, whereas no oxidation was detected in the other mutants (H91A, H93A and D104A). Our results suggest that the cysteine residues coordinating structural $Zn^{2+}$ are essential for peroxide sensing by PerR, and that the C-terminal regulatory metal binding site composed of H91, H93 and D104 can bind $Fe^{2+}$, providing a possible explanation for the peroxide sensing mechanisms by PerR.

Crystallographic Effects of Larger Indium Ion Substitution in NiFe2-xInxO4 (x = 0, 0.2, 0.5, and 1.0) System

  • Yoon, Sung-Hyun;Yoon, Chang-Sun;Kim, Byung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The crystallographic and magnetic properties of a series of substitutions in nickel ferrite where the Fe3+ is replaced with In3+ have been investigated using X-ray diffraction (XRD) and Mössbauer spectroscopy. Information on the exact crystalline structure, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles by a Rietveld method. All the crystal structures were found to be cubic with the space group Fd/3m. The lattice constants increased with In3+ concentration. The expansion of the tetrahedron was outstanding, indicative of the tetrahedral (A) site preference of larger indium ion. The Mossbauer spectra showed two sets of sextuplet originating from ferric ions occupying the tetrahedral sites and the octahedral (B) sites under the Neel temperature TN. Regardless of the composition x, the electric quadrupole splitting was zero within the experimental error. At x = 0.2, the magnetic hyperfine fields increased slightly, which meant that the nonmagnetic indium ions occupied preferentially the A-site. At the same time, the intensity of the B-site sub-spectra decreased markedly at the elevated temperature, indicating that the occupation of the A site by indium induced a considerable perturbation on the B site.

Effects of A-site Ca and B-site Zr Substitution on the Dielectric Characteristics and Microstructure of BaTiO3-CaTiO3 Composite (A-site Ca 및 B-site Zr 첨가에 의한 BaTiO3-CaTiO3복합체의 유전특성 및 미세구조에 미치는 영향)

  • 윤만순;박영민
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.37-45
    • /
    • 2003
  • The dielectric and sintering characteristics of composites made by substituting Ca ion to Ba-site and Zr ion to Ti site in $(Ba{1-x}Ca_x)(Ti{0.96-yZr_ySn_{0.04})O_3$ $(0.15{\leq}x{\leq}0.20,\;0.09{\leq}y{\leq}0.14)$ were investigated. As the content of Ca was more than 15 mol%, composite was formed by precipitating the second phase whose main element was $CaTiO_3$ and the fraction of the second phase was increased. The curie temperature of composites was depended on Ca concentration, $-1.7^{\circ}C$ per mol% and the maximum dielectric constant of composite was decreased by the rate of 200/mol%. The substitution of Zr ion decreased the curie temperature by the rate of $10^{\circ}C$ per mol% and the maximum dielectric constant was decreased by 217/mol% due to the increase of diffuse phase transition. The density and insulation breakdown characteristics were improved by suppressing the abnormal grain growth due to the increase of second phase. We developed the composition of Y5U (EIA standard) condenser which had high breakdown voltage and dielectric constant by controlling diffuse phase transition by the addition of Zr ion into composite.

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

Methionine Analogue Probes Functionally Important Residues in Active Site of Methionyl-tRNA Synthetase

  • Jo, Yeong-Joon;Lee, Sang-Won;Jo, Myung-Kyun;Lee, Jee-Woo;Kang, Mee-Kyoung;Yoon, Jeong-Hyeok;Kim, Sung-Hoon
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.547-553
    • /
    • 1999
  • Aminoacyl-tRNA synthetases are essential enzymes catalyzing the attachment of specific amino acids to cognate tRNAs. In the present work, the substrate analogue L-methionine hydroxamate was used to identify functional residues located in the active site of the E. coli methionyl-tRNA synthetase (MetRS). This compound inhibited bacteria, yeast, and human MetRS activities to a similar degree, suggesting a conserved active site structure and mechanism between MetRSs of different phylogenetic domains. Mutants of the E. coli MetRS resistant to methionine hydroxamate were also isolated. These mutants contained a substitution either at T10, Y15, or Y94. These residues are highly conserved among the different MetRSs and the mutants showed decreased aminoacylation activity, suggesting their functional and structural significances. The putative roles of these residues are discussed on a structural basis.

  • PDF

4-Substituted-kynurenic Acid Derivatives:A Novel Class of NMDA Receptor Glycine Site Antagonists

  • Kim, Ran-Hee;Chung, Yong-Jun;Lee, Chang-Woo;Jae, Yang-Kong;Young, Sik-Jung;Seong, Churl-Min;Park, No-Sang
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.351-357
    • /
    • 1997
  • A series of 4-substituted-kynurenic acid derivatives possessing several different substituents at C4-position which are consisted of both a flexible propyloxy chain and an adjunct several type of carbonyl groups has been synthesized and evaluated for their in vitro antagonist activity at the glycine site on the NMDA receptor. Of them, N-benzoylthiourea 15c and N-phenylthiourea 15a were found to have the best in vitro binding affinity with $IC_{50}$ of 3.95 and $6.04{\mu}M$, respectively. On the other hand, in compounds 12a-c and 13 the displacement of a thiourea group to an amide or a carbamate caused a significant decrease of the in vitro binding affinity. In the SAR study of the 4-substituted kynurenic acid derivatives, it was realized that the terminal substitution pattern on a flexible C4-propyloxy chain of kynurenic acid nucleus significantly influences on the binding affinity for glycine site; the binding affinity to the NMDA receptor might be increased by the introduction of a suitable electron rich substituent at C4 of kynurenic acid nucleus.

  • PDF

Distribution of Pr ions in $Y(Ba_{1-Xn}Pr_{Xn})_2Cu_3O_y$

  • Ha, Dong-Han;Lee, Kyu-Won;Kim, Jin-Tae;Park, Yong-Ki;Park, Jong-Chul
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.135-140
    • /
    • 2000
  • Distribution of Pr ions between Y- and Ba-site of the $Y(Ba_{1-Xn}Pr_{Xn})_2Cu_3O_y$ ($0{\leq}Xn{\leq}{0.3}$, Xn : nominal composition) material prepared by the solid state reaction method was studied. Although the samples have narrow superconducting transition, tiny peaks of $Y_2BaCuO_5$ impurity phase are included in the x-ray diffraction patterns suggesting that some of the Pr ions are entered into the Y-site. The distribution of Pr ions between Y- and Ba-site was determined by measuring the mass fraction of YBCO and $Y_2BaCuO_5$ phase for each sample through the Rietveld analysis of the x-ray diffraction data. About 60 % of Pr ions occupy the Y-site regardless of the Pr content. Various superconducting parameters such as the oxygen content and the hole concentration etc. are compared before and after the impurity correction.

  • PDF

Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa

  • Jo, Hyun-Joo;Lee, Ju-Won;Noh, Jin-Seok;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4169-4172
    • /
    • 2012
  • To elucidate the roles of cysteine residues in rice Phi-class GST F3, in this study, all three cysteine residues were replaced with alanine by site-directed mutagenesis in order to obtain mutants C22A, C73A and C77A. Three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Cys73 and Cys77 residues in OsGSTF3 with alanine did not affect the glutathione conjugation activities, showing non-essentiality of these residues. On the other hand, the substitution of Cys22 residue with alanine resulted in approximately a 60% loss of specific activity toward ethacrynic acid. Moreover, the ${K_m}^{CDNB}$ value of the mutant C22A was approximately 2.2 fold larger than that of the wild type. From these results, the evolutionally conserved cysteine 22 residue seems to participate rather in the structural stability of the active site in OsGSTF3 by stabilizing the electrophilic substrates-binding site's conformation than in the substrate binding directly.

Subcloning of Nodulin 26 Wild Type(S262) and Phosphorylation Site Mutant(S262D) into the Yeast Expression Vector pYES2

  • Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • Wild type nodulin 26(nod 26) cDNA(S262) and phodphorylation aite mutant(S262D) were constructed by a yeast expression system using pYES2 plasmids(pTES2-D262 and pTES2-S262D) were sc-reened by restriction mapping with BamHI of KpnI. S262 nod 26 contained a sreine residue at position 262 and S262D nod 26 contained the substitution mutation of serine to aspartic acid residue at position 262 were verified by automated floursent DNA sequencing.

  • PDF