• Title/Summary/Keyword: Subspace iteration method

Search Result 37, Processing Time 0.023 seconds

Free Vibration Analysis of Non-Proportionally Damped Structures with Multiple or Close Frequencies (중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석)

  • 김만철;정형조;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.431-438
    • /
    • 1998
  • An efficient solution method is presented to solve the eigenvalue problem arising in tile dynamic analysis of non-proportionally damped structural systems with multiple or close eigenvalues. The proposed method is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the eigenvectors to the quadratic eigenvalue problem. Even if the shift value is an eigenvalue of the system, the proposed method guarantees nonsingularity, which is analytically proved. The initial values of the proposed method can be taken as the intermediate results of iteration methods or results of approximate methods. Two numerical examples are also presented to demonstrate the effectiveness of the proposed method and the results are compared with those of the well-known subspace iteration method and the Lanczos method.

  • PDF

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.183-204
    • /
    • 2012
  • A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

Natural modes of moduled and one-bodied floating structures (모듈형 및 일체형 부유구조물의 고유로드 비교)

  • Kim, Byoung-Wan;Hong, Sa-Young;Kyoung, Jo-Hyun;Cho, Seok-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.111-116
    • /
    • 2007
  • This paper investigates and compares the natural modes and static reponses of moduled and one-bodied floating structures. Equations for calculating natural modes and static responses are formulated by finite element method and the natural modes are solved by subspace iteration method. A floating parking place whose length is 120 m and width 60 m is considered as an example structure.

  • PDF

Multilevel acceleration of scattering-source iterations with application to electron transport

  • Drumm, Clif;Fan, Wesley
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1114-1124
    • /
    • 2017
  • Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates ($S_N$) or spherical-harmonics ($P_N$) solve to accelerate convergence of a high-order $S_N$ source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergence of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI Algorithm (평균 제곱 투영 오차의 기울기에 기반한 가변 망각 인자 FAPI 알고리즘)

  • Seo, YoungKwang;Shin, Jong-Woo;Seo, Won-Gi;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.177-187
    • /
    • 2014
  • This paper proposes a fast subspace tracking methods, which is called GVFF FAPI, based on FAPI (Fast Approximated Power Iteration) method and GVFF RLS (Gradient-based Variable Forgetting Factor Recursive Lease Squares). Since the conventional FAPI uses a constant forgetting factor for estimating covariance matrix of source signals, it has difficulty in applying to non-stationary environments such as continuously changing DOAs of source signals. To overcome the drawback of conventioanl FAPI method, the GVFF FAPI uses the gradient-based variable forgetting factor derived from an improved means square error (MSE) analysis of RLS. In order to achieve the decreased subspace error in non-stationary environments, the GVFF-FAPI algorithm used an improved forgetting factor updating equation that can produce a fast decreasing forgetting factor when the gradient is positive and a slowly increasing forgetting factor when the gradient is negative. Our numerical simulations show that GVFF-FAPI algorithm offers lower subspace error and RMSE (Root Mean Square Error) of tracked DOAs of source signals than conventional FAPI based MUSIC (MUltiple SIgnal Classification).

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Analysis of Eelasto-Plastic Buckling Characteristics of Plates Using Eigenvalue Formulation (고유치문제 형성에 의한 평면판의 탄소성 좌굴 특성 해석)

  • 황학주;김문겸;이승원;김소운
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.73-82
    • /
    • 1991
  • Recently, the finite element method has been sucessfully extended to treat the rather complex phenomena such as nonlinear buckling problems which are of considerable practical interest. In this study, a finite element program to evaluate the elasto-plastic buckling stress is developed. The Stowell's deformation theory for the plastic buckling of flat plates, which is in good agreement with experimental results, is used to evaluate bending stiffness matrix. A bifurcation analysis is performed to compute the elasto-plastic buckling stress. The subspace iteration method is employed to find the eigenvalues. The results are compared with corresponding exact solutions to the governing equations presented by Stowell and also with experimental data due to Pride. The developed program is applied to obtain elastic and elasto-plastic buckling stresses for various loading cases. The effect of different plate aspect ratio is also investigated.

  • PDF

Free vibration analysis of concrete arch dams by quadratic ideal-coupled method

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Kazemiyan, Mohammad Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • This paper is devoted to two new techniques for free vibration analysis of concrete arch dam-reservoir systems. The proposed schemes are quadratic ideal-coupled eigen-problems, which can solve the originally non-symmetric eigen-problem of the system. To find the natural frequencies and mode shapes, a new special-purpose eigen-value solution routine is developed. Moreover, the accuracy of the proposed approach is thoroughly assessed, and it is confirmed that the new scheme is very accurate under all practical conditions. It is also concluded that both decoupled and ideal-coupled strategy proposed in the previous works can be considered as special cases of the current more general procedure.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

EXPLICIT BOUNDS FOR THE TWO-LEVEL PRECONDITIONER OF THE P1 DISCONTINUOUS GALERKIN METHOD ON RECTANGULAR MESHES

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.267-280
    • /
    • 2009
  • In this paper we investigate a simple two-level additive Schwarz preconditioner for the P1 symmetric interior penalty Galerkin method of the Poisson equation on rectangular meshes. The construction is based on the decomposition of the global space of piecewise linear polynomials into the sum of local subspaces, each of which corresponds to an element of the underlying mesh, and the global coarse subspace consisting of piecewise constants. This preconditioner is a direct combination of the block Jacobi iteration and the cell-centered finite difference method, and thus very easy to implement. Explicit upper and lower bounds for the maximum and minimum eigenvalues of the preconditioned matrix system are derived and confirmed by some numerical experiments.

  • PDF