• Title/Summary/Keyword: Submicron particle size

Search Result 79, Processing Time 0.02 seconds

Comminution-Classification of Clay-type Minerals by Fluid Energy Mill (Fluid Energy Mill에 의한 점토성 무기소재 미립화 분급기술 소고)

  • 김태욱;김만영;정필조;이주완
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.47-53
    • /
    • 1985
  • In view of innovated utilization of Korean clay resources conventional techniques for pulverization are reviewed in comparison with fluid energy milling processes of fluidized-bed type. Throughout experiment indigenous halloysite ores (white grade) after usual pretreatment are employed as typical sample. It is evidenced that grinding by means of porcelain ball mills has limitation in reducing clay particles to less than 10${\mu}{\textrm}{m}$ in diameter regardless of whether it is processed in dry or wet. Upon use of tungsten carbide bull mill particulation to submicron sizes could be effected with relative ease but severe coloration in grey is attended indicating metallic contamination possibly from friction of the grinding apparatus itself. In contrast the modified fluid en ergy milling enables particulation to $\leq$10${\mu}{\textrm}{m}$ in diameter with simultaneous classification int olimited ranges of particle size distributions. Since this technique is in principle based on the interparticle collisions rather than on the frictions between particles and mill surfaces minimum impurity attendance would be an additional advantage. Evidence leads to the conclusion that the fluidized-bed type milling is regarded as highly effective in puverization as well as fractionation of the clay minerals under examination. This is especially so in contemplating high-value and/or high-purity clay products.

  • PDF

A Study on the Dielectric Properties of $SrTiO_3$ Sintered Body Synthesized by Oxalate Method (수산염법으로 합성한 $SrTiO_3$ 소결체의 유전특성에 관한 연구)

  • 김병호;이만규;김석우
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.215-224
    • /
    • 1991
  • The synthesis of SrTiO3 powders having high purity and homogeneous submicron particle size was attempted by the oxalate method. The microstructure and dielectric properties of SrTiO3 based boundary layer capacitor (BLC) were investigated. Strontium titanyl oxalate[SrTiO(C2O4)2.4H2O] was prepared from the mixing solution of (Sr, Ti) using oxalic acid(H2C2O4) as a precipitating agent at 8$0^{\circ}C$. The crystalline SrTiO3 powder was obtained by thermal decomposition of the precipitate above $600^{\circ}C$. The crystalline SrTiO3 powder containing Nb2O5 as a dopant, TiO2 and SiO2 as additives was sintered at 1360~144$0^{\circ}C$ in the reducing atmosphere to get semiconductive SrTiO3. Insulating material containing PbO-Bi2O3-B2O3 frit was printed on the sintered semiconductive SrTiO3 and fired at 120$0^{\circ}C$ for 2h to get the grain boundary diffusion.

  • PDF

Discussion on the Mechanical Alloying Process of Ni-20Cr alloy (Ni-20 Cr계 분말의 기계적 합금화 과정에 대한 고찰)

  • Yoo, Myoung Ki;Choi, Ju
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 1993
  • Blends of elemental Ni and 20 weight % Cr powder were milled for different period in a laboratory attritor. Powder size distribution, microstructure and X-ray diffraction characteristics were investigated as a function of processing period. Saturated magnetization, Ms and coercive force, Hc we also measured and compared with plasma melted ingot to confirm the mechanically alloyed states. Mechanical alloying occurred as a consequence of the partition of powders and the increase of interfacial area driving diffusing of Cr into Ni. However, magnetic properties of chemically homogeneous solid solution like melted ingot has not been observed even though steady state of submicron grain size has been achieved after milling over 15 hrs. Further mechanical alloying period gave refinement of grain size, which resulted in the increase of alloyed layer. It is concluded that homogenization should be controlled by the increase of interfacial area between constitutive powders caused by plastic particle deformation and by the diffusion of Cr within the alloyed phase into Ni-rich phase through lattice defects.

  • PDF

Fabrication of Fe-TiC Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis (고에너지 밀링 및 합성반응에 의한 Fe-TiC 복합분말 제조)

  • Ahn, Ki-Bong;Lee, Byung-Hun;Lee, Young-Hee;Khoa, Hyunh Xuan;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Fe-TiC composite powder was fabricated via two steps. The first step was a high-energy milling of FeO and carbon powders followed by heat treatment for reduction to obtain a (Fe+C) powder mixture. The optimal condition for high-energy milling was 500 rpm for 1h, which had been determined by a series of preliminary experiment. Reduction heat-treatment was carried out at $900^{\circ}C$ for 1h in flowing argon gas atmosphere. Reduced powder mixture was investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Laser Particle Size Analyser (LPSA). The second step was a high-energy milling of (Fe+C) powder mixture and additional $TiH_2$ powder, and subsequent in-situ synthesis of TiC particulate in Fe matrix through a reaction of carbon and Ti. High-energy milling was carried out at 500 rpm for 1 h. Heat treatment for reaction synthesis was carried out at $1000{\sim}1200^{\circ}C$ for 1 h in flowing argon gas atmosphere. X-ray diffraction (XRD) results of the fabricated Fe-TiC composite powder showed that only TiC and Fe phases exist. Results from FE-SEM observation and Energy-Dispersive X-ray Spectros-copy (EDS) revealed that TiC phase exists uniformly dispersed in the Fe matrix in a form of particulate with a size of submicron.

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Antioxidation Behavior of Submicron-sized Cu Particles with Ag Coating (서브 마이크론급 구리 입자의 은도금 공정에 따른 내산화성 강화 연구)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • To fabricate a copper (Cu)-based fine conductive filler having antioxidation property, submicron silver (Ag)-coated Cu particles were fabricated and their antioxidation property was evaluated. After synthesizing the Cu particles of $0.705{\mu}m$ in average diameter by a wet-reduction process, Ag-coated Cu particles were fabricated by successive Ag plating using ethylene grycol solvent. Main process parameters in the Ag plating were the concentration of reductant (ascorbic acid), the injection rate of Ag precursor solution, and the stirring rate in mixed solution. Thus, Ag plating characteristics and the formation of separate fine pure Ag phase were observed with different combinations of process parameters. As a result, formation of the separate pure Ag phase and aggregation between Ag-coated Cu particles could be suppressed by optimization of the process parameters. The Ag-coated Cu particles which were fabricated using optimal conditions showed slight aggregation, but excellent antioxidation property. For example, the particles indicated the weight gain not exceeding 0.1% until $225^{\circ}C$ when they were heated in air at the rate of $10^{\circ}C/min$ and no weight gain until 75 min when they were heated in air at $150^{\circ}C$.

Synthesis of Silica Membranes on a Porous Stainless Steel by Sol-Gel Method and Effect of Preparation Conditions on Their Permselectivity

  • Lee, Dong-Wook;Nam, Seung-Eun;Sea, Bong-Kuk;Ihm, Son-Ki;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1371-1378
    • /
    • 2004
  • A porous stainless steel (SUS) as a substrate of silica composite membranes for hydrogen purification was used to improve mechanical strength of the membranes for industrial application. The SUS support was successfully modified by using submicron Ni powder, $SiO_2$ sols with particle size of 500 nm and 150 nm in turns. Silica top layer was coated on the modified supports under various preparation conditions such as calcination temperature, dipping time and repeating number of dipping-drying process. The calcination temperature for proper sintering was between H ttig temperature and Tamman temperature of the coating materials. Maximum hydrogen selectivity was investigated by changing dipping time. As repeating number of dipping-drying process increased, permeances of nitrogen and hydrogen were decreased and $H_2/N_2$ selectivity was increased due to the reduction of non-selective pinholes and mesopores. For the silica membrane prepared under optimized conditions, permeance of hydrogen was about $3\;{\times}\;10^{-5}\;cm^3{\cdot}cm^{-2}{\cdot}s^{-1}{\cdot}cmHg^{-1}$ combined with $H_2/N_2$ seletivity of about 20.

Synthesis of Sub-Micron MgH2 using Hydriding Thermal Chemical Vapor Synthesis (수소화기상증착공정을 이용한 마그네슘하이드라이드 미세분말 합성)

  • Kang, Taehee;Kim, Jinho;Han, Kyusung;Kim, Byunggoan
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.455-460
    • /
    • 2012
  • This work describes the hydriding chemical vapor synthesis (HCVS) of the $MgH_2$ in a hydrogen atmosphere and the product's hydriding-dehydridng properties. Mg powder was used as a starting material to synthesize $MgH_2$ and uniformly heated to a temperature of $600^{\circ}C$ for Mg vaporization. The effects of hydrogen pressure on the morphology and the composition of HCVS-$MgH_2$ were examined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clearly seen that after the HCVS process, the particle size of synthesized $MgH_2$ was drastically reduced to the submicron or micrometer-scale and these showed different shapes (needle-like nanofibers and angulated plate) depending on the hydrogen pressure. It was found that after the HCVS process, the $H_2$ desorption temperature of HCVS-$MgH_2$ decreased from 380 to $410^{\circ}C$, and the minimum hydrogen desorption tempreature of HCVS-$MgH_2$ powder with needle-like shape can be obtained. In addition, the enhanced hydrogen storage performance for needle-like $MgH_2$ was achieved during subsequent hydriding-dehydriding cycles.

Synthesis of Zn2SiO4 : Mn Phosphor Particles by Spray-pyrolysis Method (분무 열 분해법을 이용한 Zn2SiO4 : Mn 나노 형광체의 광학적 특성에 관한 연구)

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • Spherical shape $Zn_2SiO_4:Mn$ phosphor particles with the mean particle size from submicron to micron sizes were prepared by ultrasonic spray pyrolysis method. A droplet separator was introduced to control the size distribution of the phosphor particles with spherical shape. The $Zn_2SiO_4:Mn$ phosphor particles with 2 mol% doping concentration of manganese have decay time and have photoluminescence intensities comparable with those of the latest commercial product prepared by the solid state reaction method. The size of the phosphor particles was decreased from 1 to 0.2 micrometers as the inorganic salt solution concentration was changed from 0 to 5 M. The phosphor particles prepared from the solutions above 0.5 M have photoluminescence intensities comparable with that of the latest commercial product.