• Title/Summary/Keyword: Submicron Aerosol

Search Result 30, Processing Time 0.03 seconds

Photoluminescence Characteristics of Eu-doped Yttrium Oxide Submicron-sized Particles Prepared by Aerosol Pyrolysis

  • Park, Il-Woo;Park, Chang-Kyun;Lee, Deok-Jin;Yoo, Jea-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.29-33
    • /
    • 2003
  • Europium doped yttrium oxide submicron-sized particles were prepared by ultrasonic aerosol pyrolysis. To examine the size effect of submicron-sized-particle, the photoluminescence of the particles was investigated. The particle size was controlled by pH, reaction temperature, molar concentration of yttrium in precursor solution. The PL intensity of submicron-sized particles was decreased with particles size. When the particle size is above about 150 times of Bohr radius of Y$_2$O$_3$, the optical property of the particles shows the bulk characteristics.

Improvement of a High-volume Aerosol Particle Sampler for Collecting Submicron Particles through the Combined Use of a Cyclone with a Smoothened Inner Wall and a Circular Cone Attachment

  • Okuda, Tomoaki;Isobe, Ryoma
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2017
  • A cyclone is an effective tool to facilitate the collection of aerosol particles without using filters, and in cell exposure studies is able to collect a sufficient amount of aerosol particles to evaluate their adverse health effect. In this study, we examined two different methods to improve the aerosol particle collection efficiency of a cyclone. The individual and combined effects of reducing the surface roughness of the inner wall of the cyclone and of using a circular cone attachment were tested. The collection efficiency of particles of diameter $0.2{\mu}m$ was improved by approximately 10% when using a cyclone with a smoothened inner wall (average roughness $Ra=0.08{\mu}m$) compared with the original cyclone ($Ra=5.1{\mu}m$). A circular cone attachment placed between the bottom section of the cyclone and the top section of a collection bottle, resulted in improved collection of smaller particles without the attachment. The 50% cutoff diameter of the modified cyclone (combined use of smoothened inner wall and attachment) was $0.23{\mu}m$ compared to $0.28{\mu}m$ in the original model. The combined use of these two techniques resulted in improved collection efficiency of aerosol particles.

VARIABILITY OF THE TRENDS OBSERVED FROM SEAWIFS-DERIVED SUB-MICRON AEROSOL FRACTION OVER EAST ASIAN SEAS BASED ON DIFFERENT CLOUD MASKING ALGORITHMS

  • Li, Li-Ping;Fukushima, Hajime;Takeno, Keisuke
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.316-319
    • /
    • 2006
  • Monthly-mean aerosol parameters derived from the 1998-2004 SeaWiFS observations over East Asian waters are analyzed. SeaWiFS GAC Level 1 data covering the Northeast Asian area are collected and processed by the standard atmospheric correction algorithm released by the SeaWiFS Project to produce daily aerosol optical thickness (AOT) and ${{\AA}}ngstr{\ddot{o}}m$ exponent imageries. Monthly mean AOT and ${{\AA}}ngstr{\ddot{o}}m$ exponent values are extracted from the daily composite images for six study areas chosen from the surrounding waters of Japan. A slight increasing trend of ${{\AA}}ngstr{\ddot{o}}m$ exponent is found and interpreted as about 4-5% increase in submicron fraction of aerosol optical thickness at 550nm. Two cloud screening methods, including the standard cloud masking method of SeaWiFS and the one based on the local variance method, are applied to the SeaWiFS data processing, in an attempt to inspect the influence to the observed statistical uptrend which probably induced by different cloud mask algorithms. The variability comes from the different cloud masking algorithms are discussed.

  • PDF

An Experiment on Particle Collection and Gas Removal in a 2-Stage Electrostatic Wet Scrubber (2단 정전식 세정집진기의 집진 및 가스제거 특성)

  • Yeo, Kuk-Hyun;Yoo, Kyung-Hoon;Son, Seung-Woo;Kim, Yoon-Shin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.745-752
    • /
    • 2006
  • DOS and NaCl aerosol particles were used to determine collection efficiencies of a 2-stage electrostatic wet scrubber with respect to particle size. The DOS and NaCl aerosols have geometric mean diameters of 0.1-3.0 urn, geometric standard deviations of $1.1{\sim}1.8$ and total number concentrations of $450{\sim}2,400\;particles/cm^3$. The tested operating variables for the electrostatic wet scrubber included air velocity and water injection rate. It was shown from the experimental results that particle collection efficiencies increased in the submicron particle size range when different polarities were applied on the water nozzle and corona wire, respectively. This increase in the collection efficiency is attributed to strong electrostatic attraction between the negative water droplets and positive submicron particles. The collection efficiencies also increased when water injection rate was increased or air velocity was decreased. Meanwhile, the pressure drop across the wet scrubber decreased by 90% compared with the existing mechanical wet scrubber. Finally, ammonia gas was used to determine gas removal efficiencies. It was observed that the gas removal efficiencies increased when the air velocity was decreased or the water injection rate was increased.

Effect of PZN addition on microstructure of PZT thick films by aerosol deposition process (에어로졸 증착법에 의한 PZT 후막의 미세구조에 미치는 PZN 첨가의 영향)

  • Jang, Joo-Hee;Park, Yoon-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Lead zinc niobate (PZN) added lead zirconate titanate (PZT) thick films with thickness of $5{\sim}10{\mu}m$ were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0 %, 20 % and 40 %. The initial particles (PZT, 2PZN-8PZT, 4PZN-6PZT) had irregular shape and submicron sizes. The as-deposited film had fairly dense microstructure without any crack, and showed only a perovskite single phase formed with nano-sized grains. The as-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$, and the films deposited on sapphire were annealed at $900^{\circ}C$ in the electrical furnace. The effects of PZN addition on the microstructural evolution were observed using by FE-SEM and HR-TEM.

Source Signature of Mass, Nitrate and Sulfate in Supermicron and Submicron Aerosols at Gosan Superstation on Jeju Island (제주 고산 조대입자와 미세입자의 질량, 질산염, 황산염 변화와 고농도 특성)

  • Lim, S.H.;Lee, M.;Lee, G.;Kang, K.S.
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.221-228
    • /
    • 2010
  • Aerosol particles with different size-cuts ($PM_{10}$, $PM_{2.5}$, and $PM_{1.0}$) were collected at Gosan Superstation on Jeju Island from August 2007 to June 2008. Mean concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$ were $29.28{\mu}gm^{-3}$, $17.83{\mu}gm^{-3}$, and $14.30{\mu}gm^{-3}$, respectively. Soluble ions comprised 45.7%, 53.9%, and 60.3% of the total mass of $PM_{10}$, $PM_{2.5}$, and $PM_{1.0}$, respectively. While sulfate was the most dominant species of fine mode ($PM_{1.0}$), nitrate was enriched in coarse mode ($PM_{1.0-10}$). When the concentrations of coarse mode particles were greatly increased, nitrate tended to be enhanced in coarse mode with high calcium but low sulfate concentrations. During the high $PM_{1.0}$ events, however, nitrate was increased with sulfate at fine mode. Particularly, nitrate concentrations were substantially enhanced during high particle episodes, leading high ratios of nitrate to sulfate in air under northwest wind during wintertime. On the other hand, the levels of nitrate were lower than those of sulfate at average particle concentrations. The backward air mass trajectories indicated that nitrate concentrations were elevated in air arriving Gosan passing through Santung peninsula or near South Korea.

Design and Performance Evaluation of a Diode Type Corona Charger for Real-Time Measurement of the Submicron Aerosol (실시간 미세입자 측정을 위한 다이오드형 코로나 하전기의 설계 및 성능평가)

  • Cho, Myung-Hoon;Ji, Jun-Ho;Park, Dong-Ho;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1066-1074
    • /
    • 2004
  • With a diode corona charger, which is a component of ELPI(Electrical Low Pressure Impactor), aerosol particles are charged to make electrical detection possible before they are collected by the impactor. We designed and evaluated two cylindrical corona chargers, each of which had a central corona needle electrode. For the performance evaluation of each corona charger the polydisperse dioctyl sebacate(DOS) particles, with diameters of 0.1∼0.8 $\mu$m and NaCl particles, smaller than 0.1$\mu$m, were used. The particles were then led through an electrostatic classifier (TSI model 3081) to classify monodisperse aerosol with minimal size deviation. After evaluating the wall loss of the particles in the corona charger, we measured the product of penetration and number of charges, Pㆍn, to evaluate the corona charger efficiency at high positive voltages of 4, 5, 6 kV.

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.